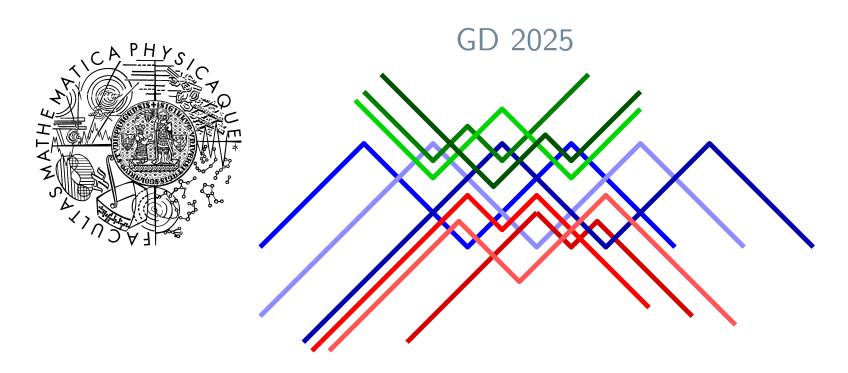
Bend number of cocomparability graphs

Todor Antić, Vit Jelínek, Martin Pergel, Felix Schröder, Peter Stumpf, Pavel Valtr



Poset (P, \preceq)

Poset (P, \preceq)

Cocomparability graph on P:

Poset (P, \preceq)

Cocomparability graph on P:

V(G) = P

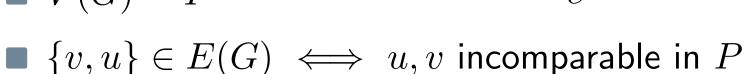
Poset (P, \preceq)

Cocomparability graph on P:

- lacksquare V(G) = P
- \blacksquare $\{v,u\} \in E(G) \iff u,v \text{ incomparable in } P$

Poset (P, \preceq)

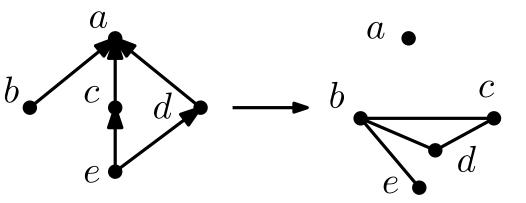
Cocomparability graph on P: b



Poset (P, \preceq)

Cocomparability graph on P: $^{b} \checkmark$

- $lackbox{ }V(G)=P$
- $\blacksquare \{v,u\} \in E(G) \iff u,v \text{ incomparable in } P$

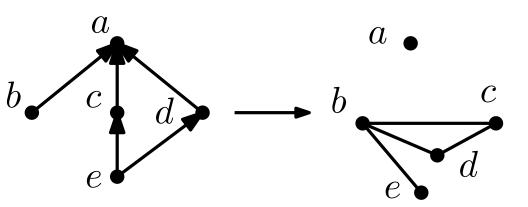


Poset (P, \preceq)

Cocomparability graph on P: b

- $lackbox{ }V(G)=P$
- $\blacksquare \{v,u\} \in E(G) \iff u,v \text{ incomparable in } P$

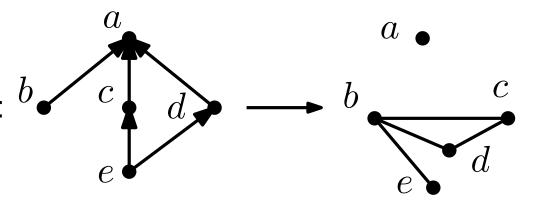
Thm: [Golumbic, Rotem and Urrutia] G is a cocomporability graph of some poset (P, \preceq) iff G is an intersection graph of x-monotone curves with endpoints on vertical lines.



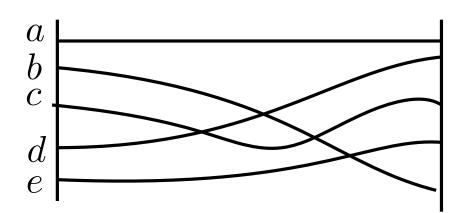
Poset (P, \preceq)

Cocomparability graph on P: $^{b} \checkmark$

- V(G) = P
- $\blacksquare \{v,u\} \in E(G) \iff u,v \text{ incomparable in } P$



Thm: [Golumbic, Rotem and Urrutia] G is a cocomporability graph of some poset (P, \preceq) iff G is an intersection graph of x-monotone curves with endpoints on vertical lines.

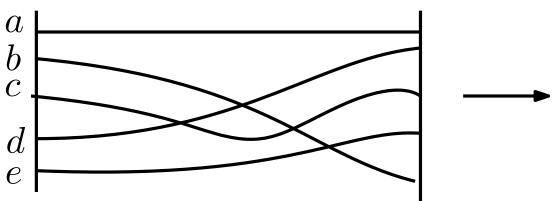


Poset (P, \preceq)

 $\{v,u\} \in E(G) \iff u,v \text{ incomparable in } P$

Cocomparability graph on P: $^{b} \checkmark$ lacksquare V(G) = P

Thm: [Golumbic, Rotem and Urrutia] G is a cocomporability graph of some poset (P, \preceq) iff G is an intersection graph of x-monotone curves with endpoints on vertical lines.

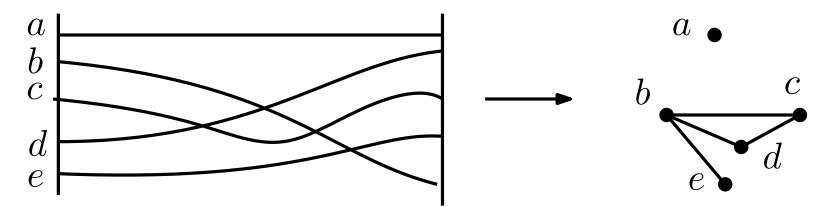


Poset (P, \preceq)

Cocomparability graph on P: $^{b} \checkmark$

- V(G) = P
- \blacksquare $\{v,u\} \in E(G) \iff u,v \text{ incomparable in } P$

Thm: [Golumbic, Rotem and Urrutia] G is a cocomporability graph of some poset (P, \preceq) iff G is an intersection graph of x-monotone curves with endpoints on vertical lines.



Motivation:

Motivation:

Curves are often hard to work with

Ċ

Motivation:

- Curves are often hard to work with
- A representation with compact combinatorial descripton is sometimes nicer

Motivation:

- Curves are often hard to work with
- A representation with compact combinatorial descripton is sometimes nicer

Solution: replace curves by piecewise linear functions with small number of **bends**.

Motivation:

- Curves are often hard to work with
- A representation with compact combinatorial descripton is sometimes *nicer*

Solution: replace curves by piecewise linear functions with small number of **bends**.

Two settings:

Motivation:

- Curves are often hard to work with
- A representation with compact combinatorial descripton is sometimes nicer

Solution: replace curves by piecewise linear functions with small number of **bends**.

Two settings:

■ **General**: any number of different slopes allowed

Motivation:

- Curves are often hard to work with
- A representation with compact combinatorial descripton is sometimes nicer

Solution: replace curves by piecewise linear functions with small number of **bends**.

Two settings:

- **General**: any number of different slopes allowed
- **Diagonal**: only two slopes $(w.l.o.g \pm 1)$

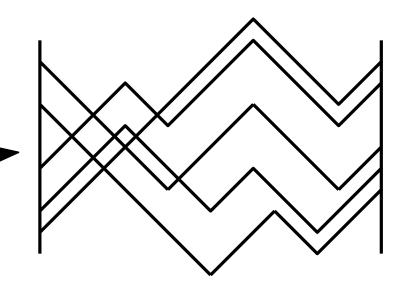
Motivation:

- Curves are often hard to work with
- A representation with compact combinatorial descripton is sometimes *nicer*

Solution: replace curves by piecewise linear functions with small number of **bends**.

Two settings:

- General: any number of different slopes allowed
- **Diagonal**: only two slopes $(w.l.o.g \pm 1)$



Motivation:

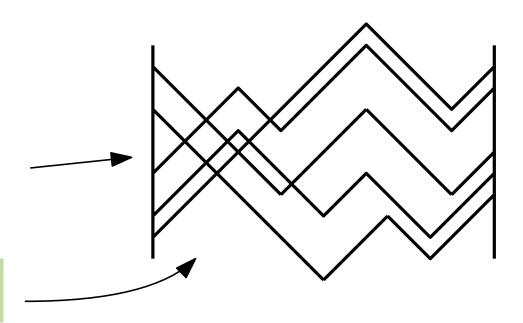
- Curves are often hard to work with
- A representation with compact combinatorial descripton is sometimes *nicer*

Solution: replace curves by piecewise linear functions with small number of **bends**.

Two settings:

- General: any number of different slopes allowed
- **Diagonal**: only two slopes $(w.l.o.g \pm 1)$

Recognition in NP!



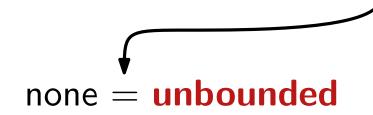
Price of *nice* representations = more things to distinguish

Price of *nice* representations = more things to distinguish

How many bounding lines?

Price of *nice* representations = more things to distinguish

How many bounding lines?



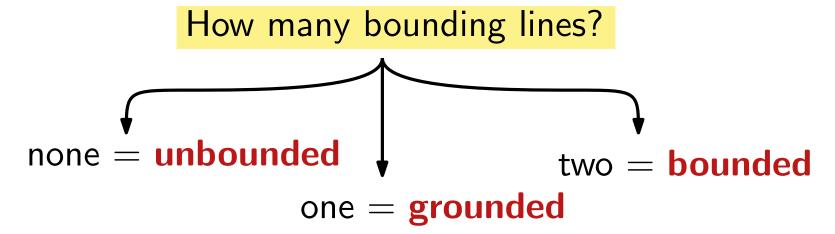
Price of *nice* representations = more things to distinguish

How many bounding lines?

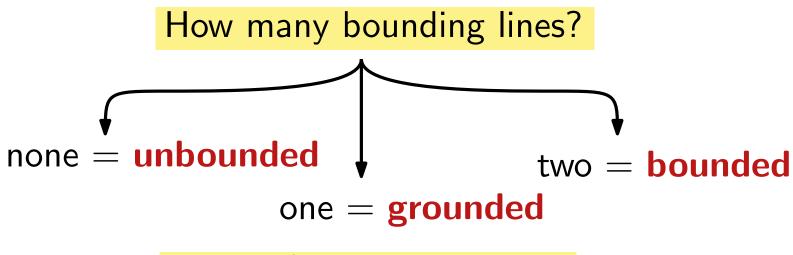
none = unbounded

one = **grounded**

Price of *nice* representations = more things to distinguish

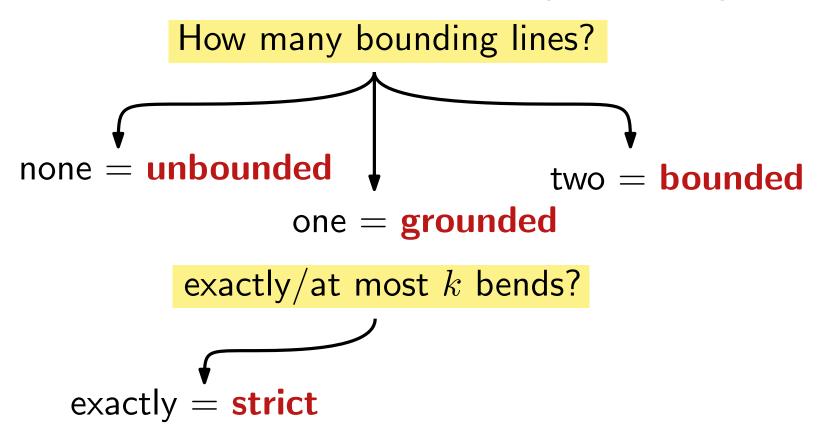


Price of *nice* representations = more things to distinguish

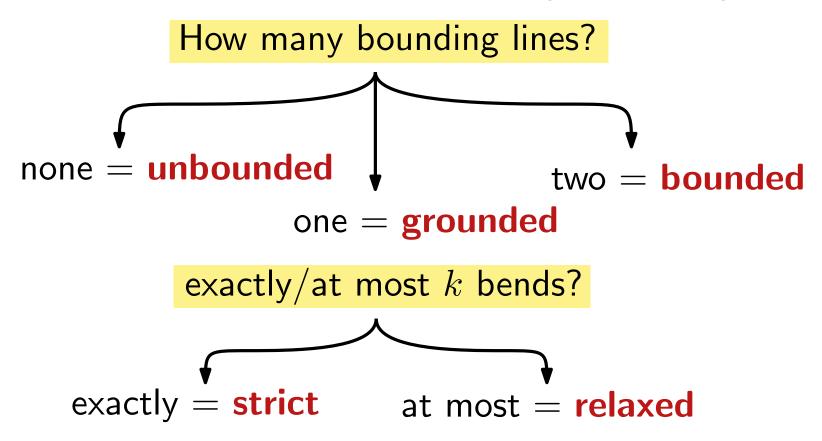


exactly/at most k bends?

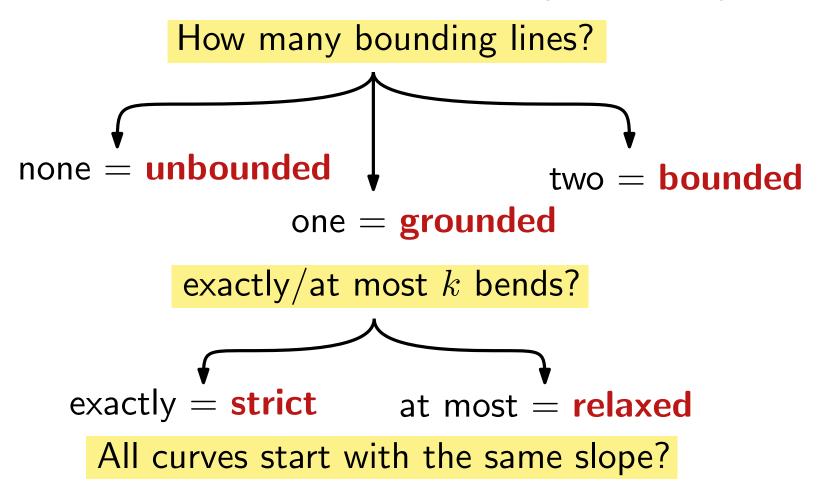
Price of *nice* representations = more things to distinguish



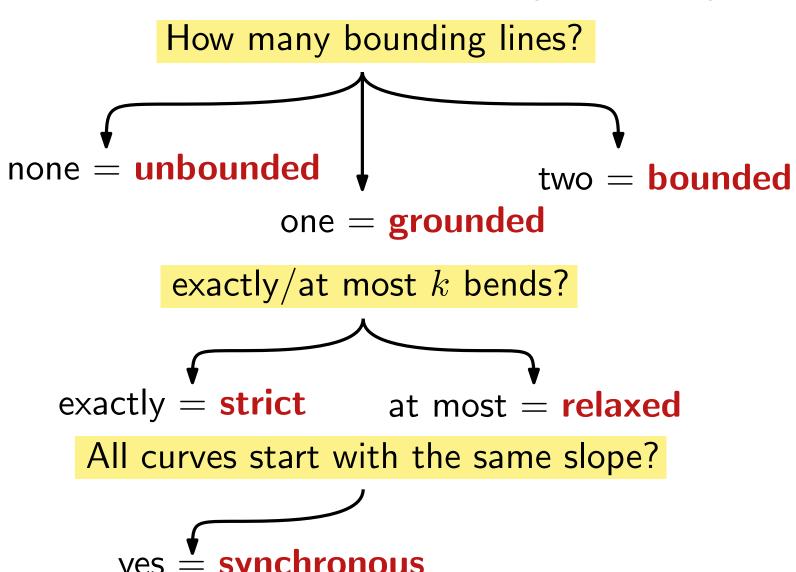
Price of *nice* representations = more things to distinguish



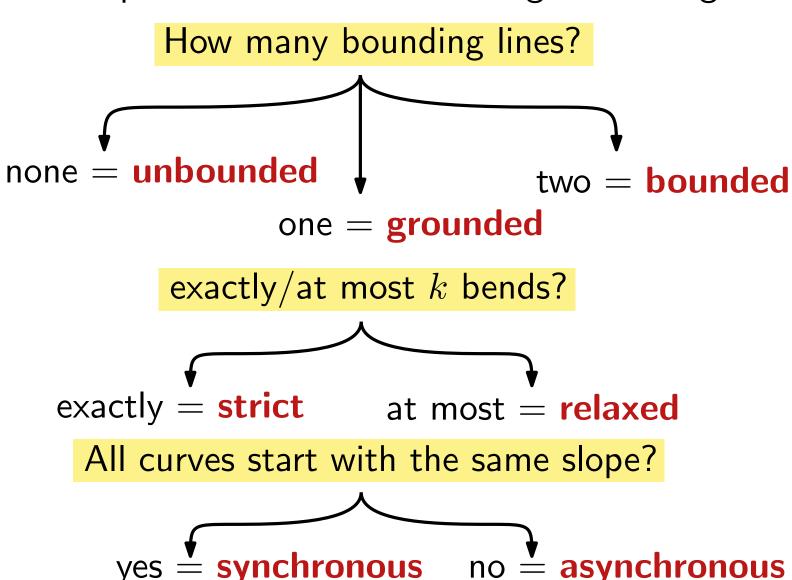
Price of *nice* representations = more things to distinguish



Price of *nice* representations = more things to distinguish



Price of *nice* representations = more things to distinguish



Price of *nice* representations = more things to distinguish 12 possible combinations, but only 5 are different:

Price of *nice* representations = more things to distinguish

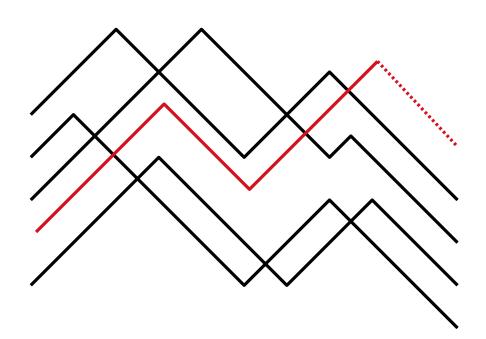
12 possible combinations, but only 5 are different:

 \blacksquare $\mathfrak{D}_k^{\nearrow}$: graphs with **strict synchronous** k-bend representation

Price of *nice* representations = more things to distinguish

12 possible combinations, but only 5 are different:

 \blacksquare $\mathfrak{D}_k^{\nearrow}$: graphs with **strict synchronous** k-bend representation



Price of *nice* representations = more things to distinguish

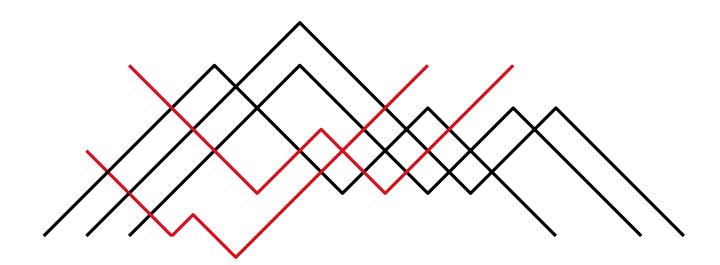
12 possible combinations, but only 5 are different:

- lacksquare $\mathfrak{D}_k^{\scriptscriptstyle{ ilde{\mathcal{I}}}}$: graphs with **strict synchronous** k-bend representation
- \blacksquare $\mathfrak{D}_k^=$: graphs with **strict unbounded** k-bend representation

Price of *nice* representations = more things to distinguish

12 possible combinations, but only 5 are different:

- \blacksquare $\mathfrak{D}_k^{\nearrow}$: graphs with **strict synchronous** k-bend representation
- \blacksquare $\mathfrak{D}_k^=$: graphs with **strict unbounded** k-bend representation



Price of *nice* representations = more things to distinguish

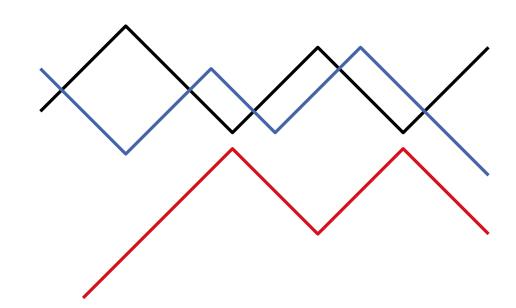
12 possible combinations, but only 5 are different:

- \blacksquare $\mathfrak{D}_k^{\nearrow}$: graphs with **strict synchronous** k-bend representation
- \blacksquare $\mathfrak{D}_k^=$: graphs with **strict unbounded** k-bend representation
- \blacksquare \mathfrak{D}_k^{\leq} : graphs with **relaxed unbounded** k-bend representation

Price of *nice* representations = more things to distinguish

12 possible combinations, but only 5 are different:

- lacksquare \mathfrak{D}_k^{\times} : graphs with **strict synchronous** k-bend representation
- \blacksquare $\mathfrak{D}_k^=$: graphs with **strict unbounded** k-bend representation
- \blacksquare \mathfrak{D}_k^{\leq} : graphs with **relaxed unbounded** k-bend representation



Price of *nice* representations = more things to distinguish

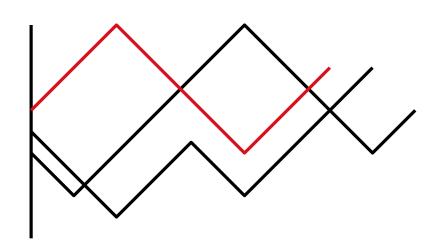
12 possible combinations, but only 5 are different:

- \blacksquare $\mathfrak{D}_k^{\nearrow}$: graphs with **strict synchronous** k-bend representation
- \blacksquare $\mathfrak{D}_k^=$: graphs with **strict unbounded** k-bend representation
- \blacksquare \mathfrak{D}_k^{\leq} : graphs with **relaxed unbounded** k-bend representation
- \blacksquare \mathfrak{D}_k^{\vdash} : graphs with **grounded** k-bend representation

Price of *nice* representations = more things to distinguish

12 possible combinations, but only 5 are different:

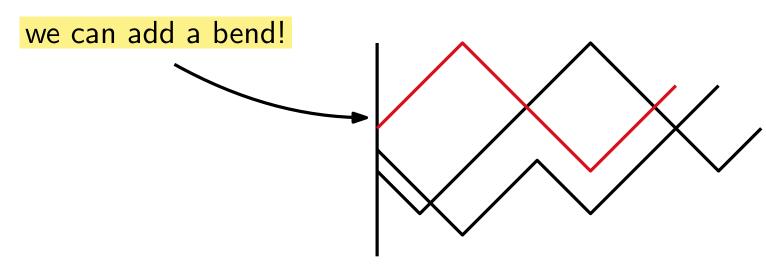
- lacksquare $\mathfrak{D}_k^{\scriptscriptstyle{ ilde{\mathcal{I}}}}$: graphs with **strict synchronous** k-bend representation
- \blacksquare $\mathfrak{D}_k^=$: graphs with **strict unbounded** k-bend representation
- \blacksquare \mathfrak{D}_k^{\leq} : graphs with **relaxed unbounded** k-bend representation
- \blacksquare \mathfrak{D}_k^{\vdash} : graphs with **grounded** k-bend representation



Price of *nice* representations = more things to distinguish

12 possible combinations, but only 5 are different:

- lacksquare $\mathfrak{D}_k^{\scriptscriptstyle{ ilde{\mathcal{I}}}}$: graphs with **strict synchronous** k-bend representation
- \blacksquare $\mathfrak{D}_k^=$: graphs with **strict unbounded** k-bend representation
- \blacksquare \mathfrak{D}_k^{\leq} : graphs with **relaxed unbounded** k-bend representation
- \blacksquare \mathfrak{D}_k^{\vdash} : graphs with **grounded** k-bend representation



Price of *nice* representations = more things to distinguish

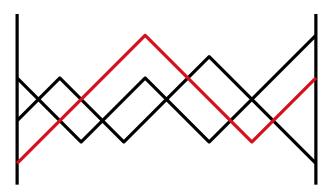
12 possible combinations, but only 5 are different:

- \blacksquare $\mathfrak{D}_k^{\nearrow}$: graphs with **strict synchronous** k-bend representation
- \blacksquare $\mathfrak{D}_k^=$: graphs with **strict unbounded** k-bend representation
- \blacksquare \mathfrak{D}_k^{\leq} : graphs with **relaxed unbounded** k-bend representation
- \blacksquare \mathfrak{D}_k^{\vdash} : graphs with **grounded** k-bend representation
- \blacksquare $\mathfrak{D}_k^{\mathsf{H}}$: graphs with **bounded** k-bend representation

Price of *nice* representations = more things to distinguish

12 possible combinations, but only 5 are different:

- lacksquare $\mathfrak{D}_k^{\scriptscriptstyle{ ilde{\mathcal{I}}}}$: graphs with **strict synchronous** k-bend representation
- \blacksquare $\mathfrak{D}_k^=$: graphs with **strict unbounded** k-bend representation
- \blacksquare \mathfrak{D}_k^{\leq} : graphs with **relaxed unbounded** k-bend representation
- \blacksquare \mathfrak{D}_k^{\vdash} : graphs with **grounded** k-bend representation
- \blacksquare $\mathfrak{D}_k^{\mathsf{H}}$: graphs with **bounded** k-bend representation



Price of *nice* representations = more things to distinguish

12 possible combinations, but only 5 are different:

- lacksquare $\mathfrak{D}_k^{\scriptscriptstyle{ ilde{\mathcal{I}}}}$: graphs with **strict synchronous** k-bend representation
- \blacksquare $\mathfrak{D}_k^=$: graphs with **strict unbounded** k-bend representation
- \blacksquare \mathfrak{D}_k^{\leq} : graphs with **relaxed unbounded** k-bend representation
- \blacksquare \mathfrak{D}_k^{\vdash} : graphs with **grounded** k-bend representation
- \blacksquare $\mathfrak{D}_k^{\mathsf{H}}$: graphs with **bounded** k-bend representation

Thm: For any $k \geq 0$, $\mathfrak{D}_k^{\nearrow} \subseteq \mathfrak{D}_k^{=} \subseteq \mathfrak{D}_k^{\leq} \subseteq \mathfrak{D}_k^{\vdash} \subseteq \mathfrak{D}_k^{\vdash} \subseteq \mathfrak{D}_{k+1}^{\vdash}$.

Thm:

For any odd $k \geq 1$, we have

$$\mathfrak{D}_{k-1}^\mathsf{H} \subsetneq \mathfrak{D}_k^{\scriptscriptstyle \nearrow} \subsetneq \mathfrak{D}_k^{\scriptscriptstyle =} = \mathfrak{D}_k^{\scriptscriptstyle \le} = \mathfrak{D}_k^{\scriptscriptstyle \vdash} \subsetneq \mathfrak{D}_k^\mathsf{H}.$$

For any even $k \geq 2$, we have

$$\mathfrak{D}_{k-1}^{\mathsf{H}}\subsetneq\mathfrak{D}_{k}^{\scriptscriptstyle{\nearrow}}\subsetneq\mathfrak{D}_{k}^{\scriptscriptstyle{=}}\subsetneq\mathfrak{D}_{k}^{\scriptscriptstyle{\leq}}\subsetneq\mathfrak{D}_{k}^{\scriptscriptstyle{\vdash}}\subsetneq\mathfrak{D}_{k}^{\scriptscriptstyle{\vdash}}.$$

Thm:

For any odd $k \geq 1$, we have

$$\mathfrak{D}_{k-1}^\mathsf{H} \subsetneq \mathfrak{D}_k^{\scriptscriptstyle \nearrow} \subsetneq \mathfrak{D}_k^{\scriptscriptstyle =} = \mathfrak{D}_k^{\scriptscriptstyle \le} = \mathfrak{D}_k^{\scriptscriptstyle \vdash} \subsetneq \mathfrak{D}_k^\mathsf{H}.$$

For any even $k \geq 2$, we have

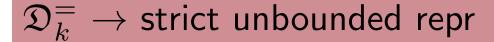
$$\mathfrak{D}_{k-1}^{\mathsf{H}}\subsetneq\mathfrak{D}_{k}^{\scriptscriptstyle{\nearrow}}\subsetneq\mathfrak{D}_{k}^{\scriptscriptstyle{=}}\subsetneq\mathfrak{D}_{k}^{\scriptscriptstyle{\leq}}\subsetneq\mathfrak{D}_{k}^{\scriptscriptstyle{\vdash}}\subsetneq\mathfrak{D}_{k}^{\scriptscriptstyle{\mathsf{H}}}.$$

Odd
$$k \geq 1$$
: $\mathfrak{D}_k^{=} = \mathfrak{D}_k^{\leq} = \mathfrak{D}_k^{\vdash}$.

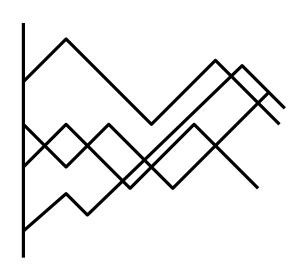
Odd
$$k \geq 1$$
: $\mathfrak{D}_k^{=} = \mathfrak{D}_k^{\leq} = \mathfrak{D}_k^{\vdash}$.

- $\mathfrak{D}_k^{=} \to \mathsf{strict}$ unbounded repr
- $\mathfrak{D}_k^{\leq}
 ightarrow \mathsf{relaxed}$ unbounded repr
 - $\mathfrak{D}_k^{\vdash} o \mathsf{grounded}$ repr

Odd
$$k \geq 1$$
: $\mathfrak{D}_k^{=} = \mathfrak{D}_k^{\leq} = \mathfrak{D}_k^{\vdash}$. $\mathfrak{D}_k^{\leq} \to \text{relaxed unbounded repr}$



 $\mathfrak{D}_k^{\vdash} o \mathsf{grounded}$ repr

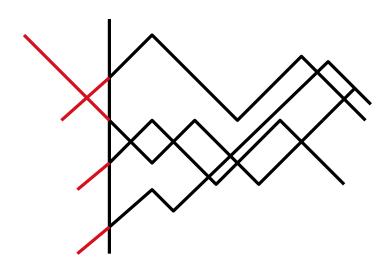


Odd
$$k \geq 1$$
: $\mathfrak{D}_k^{=} = \mathfrak{D}_k^{\leq} = \mathfrak{D}_k^{\vdash}$.

 $\mathfrak{D}_k^{=} o$ strict unbounded repr

 $\mathfrak{D}_k^{\leq}
ightarrow ext{relaxed unbounded repr}$

 $\mathfrak{D}_k^{\vdash} o \mathsf{grounded}$ repr

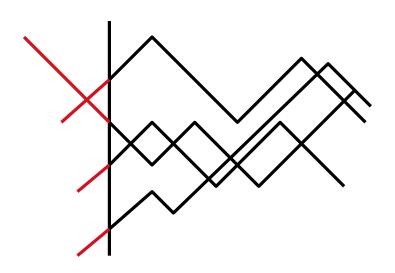


Odd
$$k \geq 1$$
: $\mathfrak{D}_k^{=} = \mathfrak{D}_k^{\leq} = \mathfrak{D}_k^{\vdash}$.

$$\mathfrak{D}_k^{=} \to \mathsf{strict}$$
 unbounded repr

$$\mathfrak{D}_k^{\leq} o$$
 relaxed unbounded repr

$$\mathfrak{D}_k^{\vdash} \to \mathsf{grounded}$$
 repr



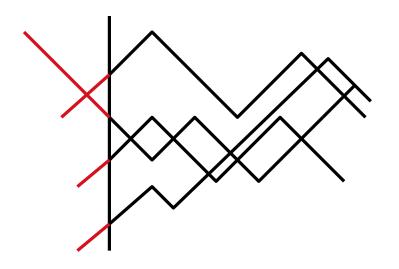
New crossings to the left of the grounding line

Odd
$$k \geq 1$$
: $\mathfrak{D}_k^{=} = \mathfrak{D}_k^{\leq} = \mathfrak{D}_k^{\vdash}$.

$$\mathfrak{D}_k^{=} \to \mathsf{strict}$$
 unbounded repr

$$\mathfrak{D}_k^{\leq}
ightarrow ext{relaxed unbounded repr}$$

$$\mathfrak{D}_k^{\vdash} o \mathsf{grounded}$$
 repr



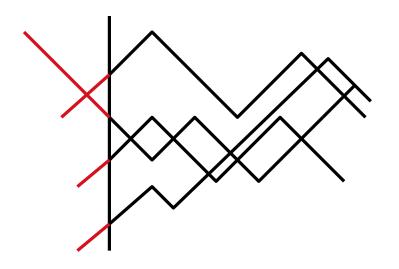
- New crossings to the left of the grounding line
- Extended curves cross left slopes are different

Odd
$$k \geq 1$$
: $\mathfrak{D}_k^{=} = \mathfrak{D}_k^{\leq} = \mathfrak{D}_k^{\vdash}$.

$$\mathfrak{D}_k^{=} o$$
 strict unbounded repr

$$\mathfrak{D}_k^{\leq}
ightarrow \mathsf{relaxed}$$
 unbounded repr

$$\mathfrak{D}_k^{\vdash} o \mathsf{grounded}$$
 repr



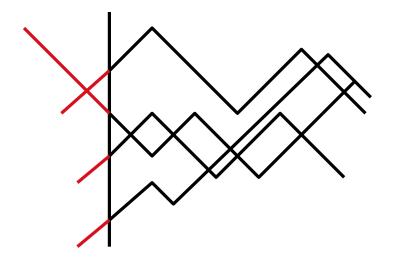
- New crossings to the left of the grounding line
- Extended curves cross left slopes are different
- Left slopes are different right slopes are different

Odd
$$k \geq 1$$
: $\mathfrak{D}_k^{=} = \mathfrak{D}_k^{\leq} = \mathfrak{D}_k^{\vdash}$.

$$\mathfrak{D}_k^{=} o$$
 strict unbounded repr

$$\mathfrak{D}_k^{\leq} o$$
 relaxed unbounded repr

$$\mathfrak{D}_k^{\vdash} o \mathsf{grounded}$$
 repr



- New crossings to the left of the grounding line
- Left slopes are different right slopes are different
- Extended curves cross original curves cross!

Price of *nice* representations = more things to distinguish

Price of *nice* representations = more things to distinguish

How many bounding lines do we have?

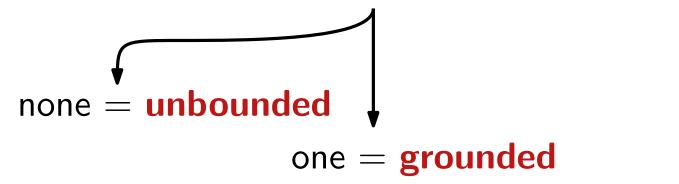
Price of *nice* representations = more things to distinguish

How many bounding lines do we have?

none = unbounded

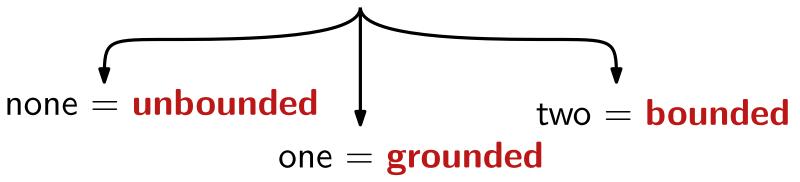
Price of *nice* representations = more things to distinguish

How many bounding lines do we have?



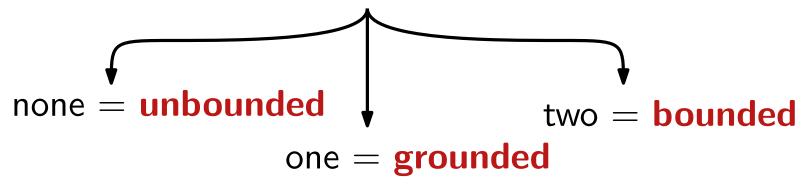
Price of *nice* representations = more things to distinguish

How many bounding lines do we have?



Price of *nice* representations = more things to distinguish

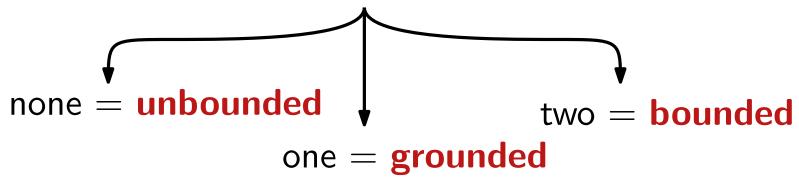
How many bounding lines do we have?



Do we have exactly k bends?

Price of *nice* representations = more things to distinguish

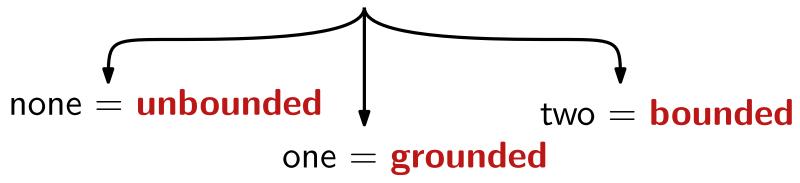
How many bounding lines do we have?



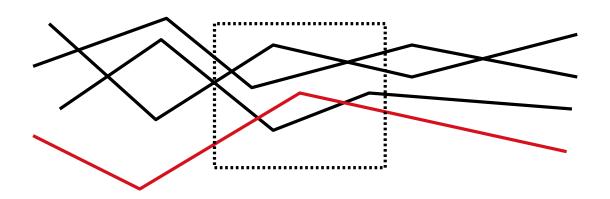
Do we have exactly k bends? Doesn't matter!

Price of *nice* representations = more things to distinguish

How many bounding lines do we have?

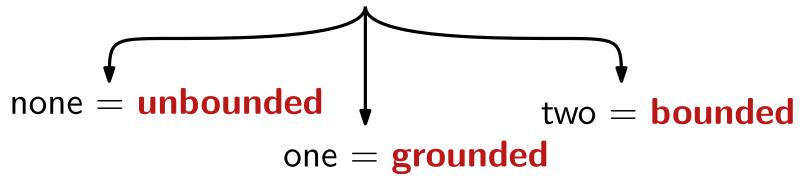


Do we have exactly k bends? Doesn't matter!

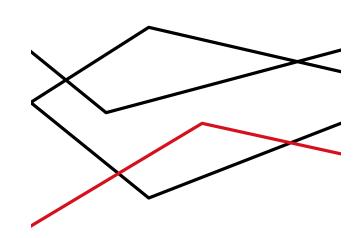


Price of *nice* representations = more things to distinguish

How many bounding lines do we have?

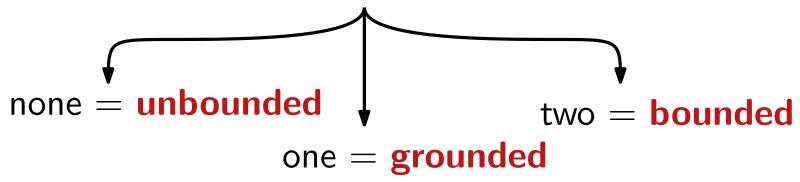


Do we have exactly k bends? Doesn't matter!

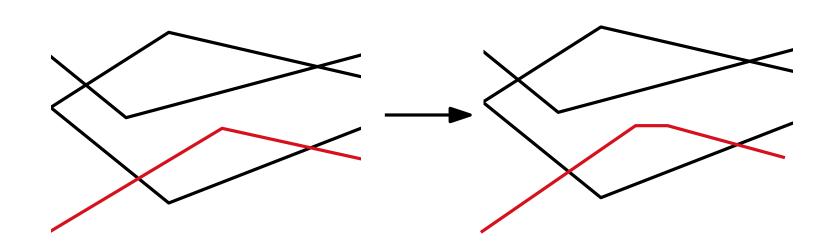


Price of *nice* representations = more things to distinguish

How many bounding lines do we have?

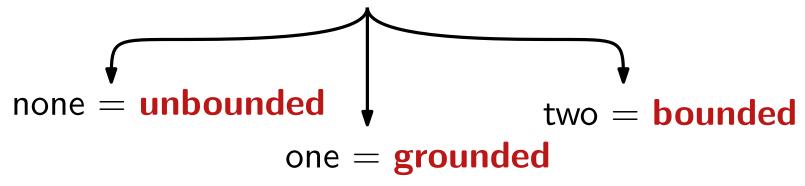


Do we have exactly k bends? Doesn't matter!



Price of *nice* representations = more things to distinguish

How many bounding lines do we have?



Do we have exactly k bends? Doesn't matter!

Do all curves start with the same slope?

Not so natural to ask

Price of *nice* representations = more things to distinguish Three classes:

Price of *nice* representations = more things to distinguish Three classes:

 \blacksquare \mathfrak{G}_k^- : graphs with **unbounded** k-bend representation

Price of *nice* representations = more things to distinguish Three classes:

- lacksquare \mathfrak{G}_k^- : graphs with **unbounded** k-bend representation
- lacksquare \mathfrak{G}_k^{\vdash} : graphs with **grounded** k-bend representation

Price of *nice* representations = more things to distinguish Three classes:

- lacksquare \mathfrak{G}_k^- : graphs with **unbounded** k-bend representation
- lacksquare \mathfrak{G}_k^{\vdash} : graphs with **grounded** k-bend representation
- $lacksquare{\mathbb{G}}_k^{\mathsf{H}}$: graphs with **bounded** k-bend representation

Price of *nice* representations = more things to distinguish Three classes:

- lacksquare \mathfrak{G}_k^- : graphs with **unbounded** k-bend representation
- lacksquare \mathfrak{G}_k^{\vdash} : graphs with **grounded** k-bend representation
- \blacksquare \mathfrak{G}_k^H : graphs with **bounded** k-bend representation

But two are actually same...

Price of *nice* representations = more things to distinguish Three classes:

- \blacksquare \mathfrak{G}_k^- : graphs with **unbounded** k-bend representation
- lacksquare \mathfrak{G}_k^{\vdash} : graphs with **grounded** k-bend representation
- lacksquare $\mathfrak{G}_k^{\mathsf{H}}$: graphs with **bounded** k-bend representation

But two are actually same... Thm: For any k, $\mathfrak{G}_k^{\mathsf{H}} = \mathfrak{G}_k^{\mathsf{L}}$.

Price of *nice* representations = more things to distinguish Three classes:

- lacksquare \mathfrak{G}_k^- : graphs with **unbounded** k-bend representation
- lacksquare \mathfrak{G}_k^{\vdash} : graphs with **grounded** k-bend representation
- lacksquare \mathfrak{G}_k^H : graphs with **bounded** k-bend representation

But two are actually same... Thm: For any k, $\mathfrak{G}_k^{\mathsf{H}} = \mathfrak{G}_k^{\mathsf{L}}$.

Idea:

Price of *nice* representations = more things to distinguish Three classes:

- \blacksquare \mathfrak{G}_k^- : graphs with **unbounded** k-bend representation
- lacksquare \mathfrak{G}_k^{\vdash} : graphs with **grounded** k-bend representation
- lacksquare $\mathfrak{G}_k^{\mathsf{H}}$: graphs with **bounded** k-bend representation

But two are actually same...

Thm: For any k, $\mathfrak{G}_k^{\mathsf{H}} = \mathfrak{G}_k^{\mathsf{L}}$.

Idea: Use projective transformation

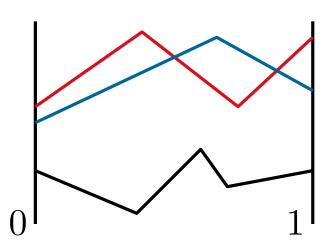
Price of *nice* representations = more things to distinguish Three classes:

- \blacksquare \mathfrak{G}_k^- : graphs with **unbounded** k-bend representation
- lacksquare \mathfrak{G}_k^{\vdash} : graphs with **grounded** k-bend representation
- lacksquare \mathfrak{G}_k^H : graphs with **bounded** k-bend representation

But two are actually same...

Thm: For any k, $\mathfrak{G}_k^{\mathsf{H}} = \mathfrak{G}_k^{\mathsf{L}}$.

Idea: Use projective transformation



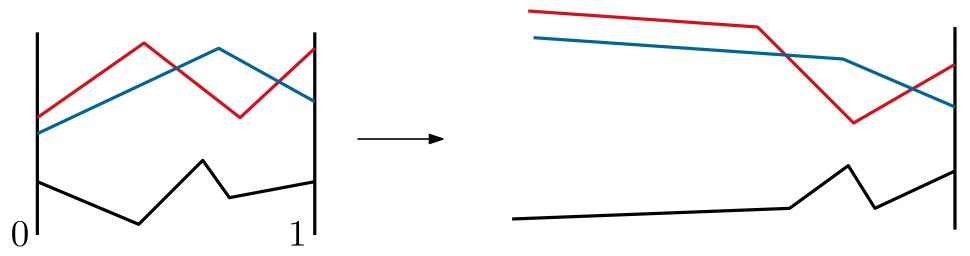
Price of *nice* representations = more things to distinguish Three classes:

- lacksquare \mathfrak{G}_k^- : graphs with **unbounded** k-bend representation
- lacksquare \mathfrak{G}_k^{\vdash} : graphs with **grounded** k-bend representation
- lacksquare \mathfrak{G}_k^H : graphs with **bounded** k-bend representation

But two are actually same...

Thm: For any k, $\mathfrak{G}_k^{\mathsf{H}} = \mathfrak{G}_k^{\mathsf{L}}$.

Idea: Use projective transformation



Thm: For any $k \geq 0$, $\mathfrak{G}_k^- \subseteq \mathfrak{G}_k^+ = \mathfrak{G}_k^+ \subsetneq \mathfrak{G}_{k+1}^-$.

Thm: For any $k \geq 0$, $\mathfrak{G}_k^- \subseteq \mathfrak{G}_k^+ = \mathfrak{G}_k^+ \subsetneq \mathfrak{G}_{k+1}^-$.

For $k \geq 0$: $\mathfrak{G}_k^{\mathsf{H}} \subsetneq \mathfrak{G}_{k+1}^{\mathsf{-}}$

For
$$k \geq 0$$
: $\mathfrak{G}_k^{\mathsf{H}} \subsetneq \mathfrak{G}_{k+1}^{\mathsf{-}}$

 $\mathfrak{G}_k^{\mathsf{H}}$: bounded k bends

 \mathfrak{G}_{k+1}^- : unbounded (k+1) bends

For
$$k \geq 0$$
: $\mathfrak{G}_k^{\mathsf{H}} \subsetneq \mathfrak{G}_{k+1}^{\mathsf{-}}$

 $\mathfrak{G}_k^{\mathsf{H}}$: bounded k bends

 \mathfrak{G}_{k+1}^- : unbounded (k+1) bends

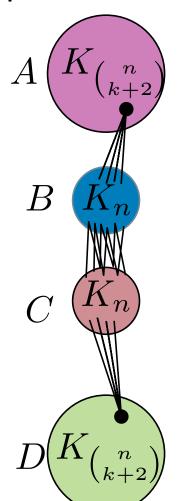
Separation is witnessed by the following graph:

For
$$k \geq 0$$
: $\mathfrak{G}_k^{\mathsf{H}} \subsetneq \mathfrak{G}_{k+1}^{\mathsf{-}}$

 $\mathfrak{G}_k^{\mathsf{H}}$: bounded k bends

 \mathfrak{G}_{k+1}^- : unbounded (k+1) bends

Separation is witnessed by the following graph:

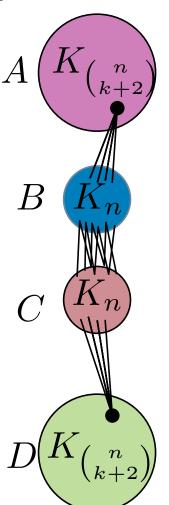


For
$$k \geq 0$$
: $\mathfrak{G}_k^{\mathsf{H}} \subsetneq \mathfrak{G}_{k+1}^{\mathsf{-}}$

 $\mathfrak{G}_k^{\mathsf{H}}$: bounded k bends

 \mathfrak{G}_{k+1}^- : unbounded (k+1) bends

Separation is witnessed by the following graph:



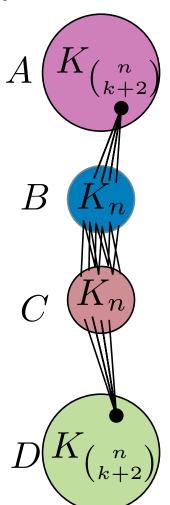
 \blacksquare n is very very large

For
$$k \geq 0$$
: $\mathfrak{G}_k^{\mathsf{H}} \subsetneq \mathfrak{G}_{k+1}^{\mathsf{-}}$

 $\mathfrak{G}_k^{\mathsf{H}}$: bounded k bends

 \mathfrak{G}_{k+1}^- : unbounded (k+1) bends

Separation is witnessed by the following graph:



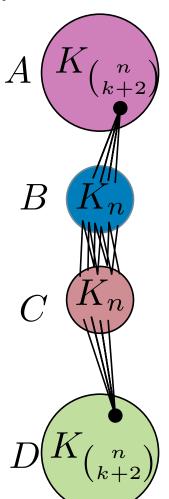
- \blacksquare n is very very large
- lacksquare $B \cup C$ is a clique

For
$$k \ge 0$$
: $\mathfrak{G}_k^{\mathsf{H}} \subsetneq \mathfrak{G}_{k+1}^{\mathsf{-}}$

$$\mathfrak{G}_k^{\mathsf{H}}$$
: bounded k bends

$$\mathfrak{G}_{k+1}^-$$
: unbounded $(k+1)$ bends

Separation is witnessed by the following graph:



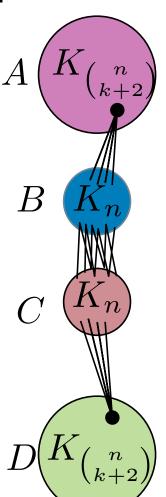
- \blacksquare n is very very large
- lacksquare $B \cup C$ is a clique
- Every (k+2)-tuple in B is adjacent to a unique vertex in A

For
$$k \ge 0$$
: $\mathfrak{G}_k^{\mathsf{H}} \subsetneq \mathfrak{G}_{k+1}^{\mathsf{-}}$

 $\mathfrak{G}_k^{\mathsf{H}}$: bounded k bends

 \mathfrak{G}_{k+1}^- : unbounded (k+1) bends

Separation is witnessed by the following graph:



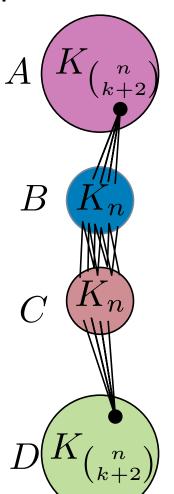
- \blacksquare n is very very large
- lacksquare $B \cup C$ is a clique
- Every (k+2)-tuple in B is adjacent to a unique vertex in A
- Every (k+2)-tuple in C is adjacent to a unique vertex in D

For
$$k \ge 0$$
: $\mathfrak{G}_k^{\mathsf{H}} \subsetneq \mathfrak{G}_{k+1}^{\mathsf{-}}$

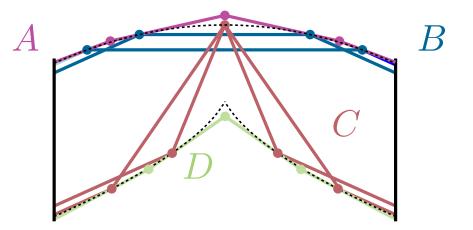
 $\mathfrak{G}_k^{\mathsf{H}}$: bounded k bends

 \mathfrak{G}_{k+1}^- : unbounded (k+1) bends

Separation is witnessed by the following graph:



- \blacksquare n is very very large
- lacksquare $B \cup C$ is a clique
- Every (k+2)-tuple in B is adjacent to a unique vertex in A
- Every (k+2)-tuple in C is adjacent to a unique vertex in D



Thank you for attention!