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Outline:

» geometric intersection graph classes: structure of their intersection
models,

» modular decomposition tree — data structure representing intersection
models of certain geometric intersection graphs,

» modular decomposition for circular-arc graphs:
> PQSM-tree — data structure representing all normalized intersection
models of circular-arc graphs,
> inspired by the work of Wen-Lian Hsu from 1995,
(this GD-work: Hsu's ideas and the errors in his work).



geometric intersection graphs

S — a family of geometric objects,

Intersection graphs of objects in S — graphs that admit an intersection model in S:

» the vertices represented by objects in S such that
two vertices are adjacent <= the corresponding objects intersect.

Examples:

— W ¢ O

interval graphs permutation circle graphs circular-arc graphs
graphs



modular decomposition tree

Modular decomposition tree — developed to represent all
transitive orientations of comparability graphs,
Gallai, 1967

Modular decomposition tree of G represents the set of all
modules of G.

module — a subset M of V/(G) such that every vertex
from outside M is adjacent to every vertex in M or to no
vertex in M.

modular decomposition tree M(G) of G:

» consists of so-called strong modules of G,
which ordered by C form a tree,

» V(G) is the root of M(G),
> {v} for v € V(G) are the leaves of M(G).
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strong modules in intersection models of
interval /permutation graphs

Let M be a strong module in an interval/permutation graph G.
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strong modules in intersection models of
interval /permutation graphs

Let M be a strong module in an interval/permutation graph G.

In every interval model of G:
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» The smallest interval containing all intervals

M M
— — of M (gray box) is either disjoint from or
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contained in every other interval of the model.
— —

We can reflect all intervals in M to obtain another
model of G.

In every permutation model of G:

» The smallest box containing all segments
of M (gray box) is either disjoint from every
other segment of the model or crossed by it.

We can reflect all segments in M to obtain another
model of G.

If G is prime (has no non-trivial modules),
then G has a unique (up to reflection and certain normalizations) model.



modular decomposition tree

Modular decomposition tree as a data structure representing models of some
geometric intersection graphs.
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modular decomposition tree

Modular decomposition tree as a data structure representing models of some
geometric intersection graphs.
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G — a circular-arc graph, no twins and no universal vertices,

normalized models of G: relative relations between the arcs reflect relations
between the closed neighborhoods of the vertices of G.



normalized models of circular-arc graphs
G — a circular-arc graph, no twins and no universal vertices,

normalized models of G: relative relations between the arcs reflect relations
between the closed neighborhoods of the vertices of G.

w ¢ E(G) u and v are disjoint
NGO% in G
P(v) . ined i
T u is contained in v
P(u) N[u] € N
lu] € N[V ain
0 uv € E(G),
N[u]U N[v] = V(G), u and v cover the
w w € N[u]\ N[v] = N[w] € N[u], circle in G
w € N[v]\ N[u] = N[w] € N[v]
¥(v) u and v overlap
o) otherwise in G,

denoted u ~ v.

G,y — the overlap graph of G.
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normalized models = chord models
(Spinrad 1998, Hsu 1996)

» 4 — a normalized model of G,

> convert every arc ¥(v) into chord ¢(v)
with the same endpoints

u and v overlap u is contained in v u and v cover the circle u contains v u and v are disjoint

Pairs of vertices of G:

normalized models of G = chord models of G, (Goy is a circle graph!)
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co-bipartite circular-arc graphs, Spinrad 1988

G = (A, B, E) — a co-bipartite circular-arc graphs,
vertex set is partitioned into two cliques: A and B,
> normalized model of G = strongly normalized models of G:
> arcs for the vertices of A contain the leftmost point of the circle,
> arcs for the vertices of B contain the rightmost point of the circle,

> strongly normalized model of G = chord models of G, .

> G, — permutation graph!

» modular decomposition tree of G,, represents all s.n. models of G,

» Gy - prime = G has a unique s. n. model.



Hsu's approach

An attempt to generalize Spinrad’s work to the class of all circular-arc graphs:
» normalized models of G = chord models of G,,,

» G,y is a circle graph (we can not use Gallai's tools).
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Hsu's approach

An attempt to generalize Spinrad’s work to the class of all circular-arc graphs:
» normalized models of G = chord models of G,,,

» G,y is a circle graph (we can not use Gallai's tools).

¢ ©d d

u and v cover the
u and v overlap is contained in v ) u contains v u and v are disjoint
circle

conformal models of G,, — chord models of G,, corresponding to normalized models
of G.



Hsu's approach — the first idea

If Goy is prime, then G,, admits a unique conformal model.

Proof idea (induction):
» decompose Go, into smaller prime graphs,

» argue that their unique conformal models can be uniquely combined into
a conformal model of G,,.



Hsu's approach — the first idea

If Goy is prime, then G,, admits a unique conformal model.

Proof idea (induction):
» decompose Go, into smaller prime graphs,
» argue that their unique conformal models can be uniquely combined into

a conformal model of G,,.

The smaller graphs determined by Hsu are not prime (the counterexample in
the paper).



Hsu's approach — the second idea

The vertex set V(G) can be partitioned into so-called consistent modules, intended to
satisfy the following properties:

» For every conformal model of G,, and every consistent module R, the chords
representing the vertices in R are spanned between two arcs Ag and Bg, which
contain no endpoint of any chord corresponding to a vertex outside R.

» The possible placements of the arcs Ag and Bg in conformal models of G,, can
be represented by the modular decomposition of Gy .
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Hsu's approach — the second idea

The vertex set V(G) can be partitioned into so-called consistent modules, intended to
satisfy the following properties:

» For every conformal model of G,, and every consistent module R, the chords
representing the vertices in R are spanned between two arcs Ag and Bg, which
contain no endpoint of any chord corresponding to a vertex outside R.

» The possible placements of the arcs Ag and Bg in conformal models of G,, can
be represented by the modular decomposition of Gy .

\ABI \ABI
V3 Vo /r 7\
Ag AR AR Ac
Vg Vi
Br Be Bg Br
5 Ve Bg Bg

The consistent modules defined by Hsu do not satisfy the properties listed above (the
counterexample in the paper).



Hsu's work

In his work (1) from 1995, Wen-Lian Hsu claimed three results:

» the design of so-called decomposition trees representing the structure of
all normalized intersection models of circular-arc graphs,

» an O(mn)-time recognition algorithm for circular-arc graphs,

» an O(mn)-time isomorphism algorithm for circular-arc graphs.

Curtis, Lin, McConnell, Nussbaum, Soulignac, Spinrad, Szwarcfiter (2013):

» reported an error in Hsu's isomorphism algorithm.

T.K. (2025):

» the other two results of Hsu's work are also incorrect,
Hsu's decomposition trees are not constructed properly,

» The Gallai-Spinrad-Hsu framework can be made to work! (2020)

(1) Wen-Lian Hsu, O(mn)-time algorithms for the recognition and
isomorphism problems on circular-arc graphs,
SIAM J. Comput. 24(3), 411-439, 1995.



our approach

We orient the chord ¢(v) associated with the arc i(v) so that the arc ¢(v) is on the
left side of the oriented chord ¢(v).
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Conformal models of Go, — oriented chord models of G, such that for every
v e V(G):

> the chords for vertices in left(v) are on the left side of the chord for v,

> the chords for vertices in right(v) are on the right side of the chord for v.
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We orient the chord ¢(v) associated with the arc i(v) so that the arc ¢(v) is on the
left side of the oriented chord ¢(v).

AT ' ‘ ‘

d | . . . u and v cover the . d disiol
u and v overlap u is contained in v circle u contains v u and v are disjoint

left(v) = {u€ V(G): uis contained in v or u and v cover the circle},
right(v) {u € V(G) : u contains v or u and v are disjoint}.

Conformal models of Go, — oriented chord models of G, such that for every
v e V(G):

> the chords for vertices in left(v) are on the left side of the chord for v,

> the chords for vertices in right(v) are on the right side of the chord for v.

normalized models of G <= conformal models of G,



two approaches - a comparison

» Hsu tries to describe how to transform between conformal models so as
to keep parallel/serial relation between non-intersecting triples of chords
unchanged,

» We try to describe how to transform between conformal models that keep
left/right relation between every two non-intersecting chords unchanged.

parallel triple serial triple



two approaches - a comparison

» The reflection of two overlapping arcs a and b yields two intersecting
chords, (no effect is seen).

» The reflection of two overlapping arcs a and b yields two intersecting
orineted chords, with the head of a switching from the left side of b to its
right side.

[T ——
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results

T.K. (2020):

PQSM-tree (refined modular decomposition of the overlap graph) — a data
structure representing all normalized models of circular-arc graphs,

(can be constructed in linear-time.)



results

T.K. (2020):

PQSM-tree (refined modular decomposition of the overlap graph) — a data
structure representing all normalized models of circular-arc graphs,

(can be constructed in linear-time.)

T K. (2020):
The isomorphism and canonization problem in the class of circular-arc graphs
can be solved in linear-time.

Remarks:

» Our proof havily uses the ideas introduced by Hsu.



modular decomposition tree

Modular decomposition tree as a data structure representing models of some
geometric intersection graphs.
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