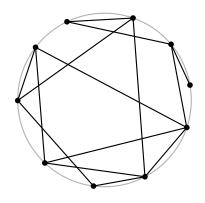
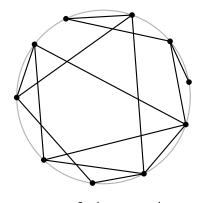
Treewidth of Outer k-Planar Graphs

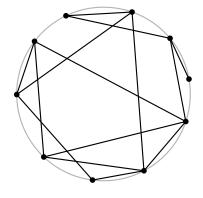

Rafał Pyzik

Jagiellonian University Krakow, Poland


Convex drawing:

- straight-line
- vertices on a circle

Outer *k***-planar graph** admits a drawing:


- straight-line
- vertices on a circle
- k-planar

outer 3-planar graph

Outer min-k-planar graph admits a drawing:

- straight-line
- vertices on a circle
- min-k-planar

outer min-2-planar graph

Outer min-k-planar graph admits a drawing:

- straight-line
- vertices on a circle
- min-k-planar

outer min-2-planar graph

Treewidth:

	upper	lower
outer <i>k</i> -planar	1.5k + 2	k+2
outer min-k-planar	3k + 1	k+2

Treewidth:

	upper	lower		upper	lower
outer <i>k</i> -planar	1.5k + 2	k + 2	\longrightarrow	1.5k + 2	
outer min-k-planar	3k + 1	k+2			

Treewidth:

	upper	lower		upper	lower
outer <i>k</i> -planar	1.5k + 2	k + 2	\longrightarrow	1.5k + 2	1.5k + 0.5
outer min-k-planar	3k + 1	k+2			1.5k + 0.5

Treewidth:

	upper	lower		upper	lower
outer <i>k</i> -planar	1.5k + 2	k + 2	\longrightarrow	1.5k + 2	1.5k + 0.5
outer min-k-planar	3k + 1	k+2		1.5k + 4	1.5k + 0.5

Treewidth:

	upper	lower		upper	lower
outer <i>k</i> -planar	1.5k + 2	k + 2	\longrightarrow	1.5k + 2	1.5k + 0.5
outer min-k-planar	3k + 1	k+2		1.5k + 4	1.5k + 0.5

Treewidth:

	upper	lower		upper	lower
outer k-planar	1.5k + 2	k + 2	\longrightarrow	1.5k + 2	1.5k + 0.5
outer min-k-planar	3k + 1	k+2		1.5k + 4	1.5k + 0.5

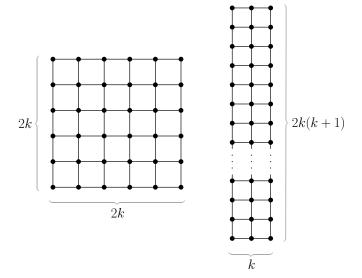
Separation number:

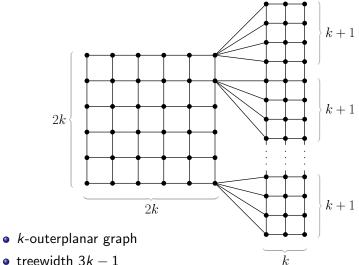
	upper	lower
outer <i>k</i> -planar	k + 2	k + 2
outer min-k-planar	2k + 1	k+2

Treewidth:

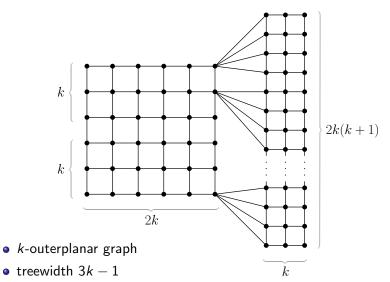
	upper	lower		upper	lower
outer <i>k</i> -planar	1.5k + 2	k + 2	\longrightarrow	1.5k + 2	1.5k + 0.5
outer min-k-planar	3k + 1	k+2		1.5k + 4	1.5k + 0.5

Separation number:

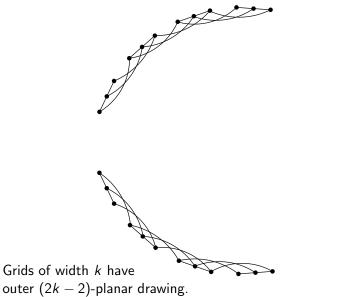

	upper	lower		upper	lower
outer <i>k</i> -planar	k+2	k + 2	\longrightarrow	k + 2	k + 2
outer min-k-planar	2k + 1	k+2			k+2

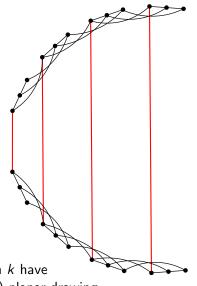

Treewidth:

	upper	lower		upper	lower
outer <i>k</i> -planar	1.5k + 2	k + 2	\longrightarrow	1.5k + 2	1.5k + 0.5
outer min-k-planar	3k + 1	k+2		1.5k + 4	1.5k + 0.5

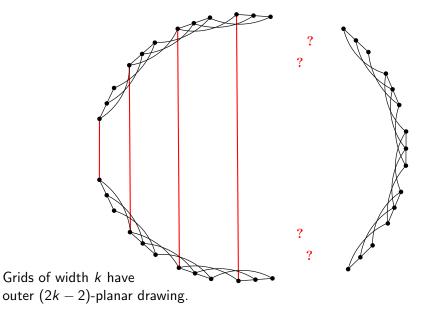

Separation number:

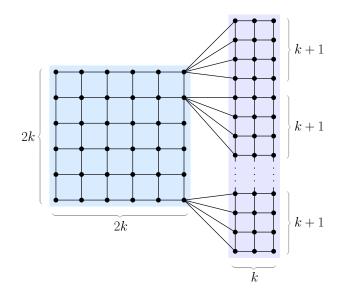
	upper	lower		upper	lower
outer k-planar	k+2	k + 2	\longrightarrow	k + 2	k+2
outer min-k-planar	2k + 1	k+2		k + 4	k+2

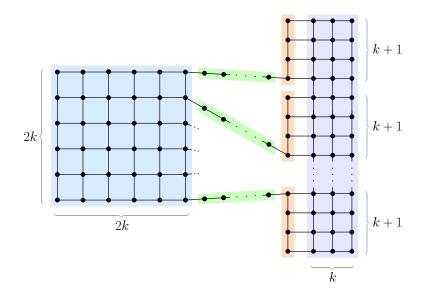


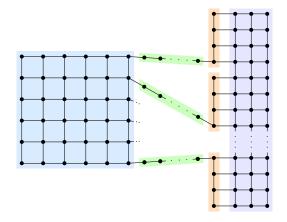


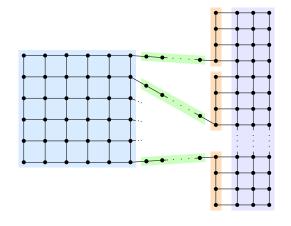
- a a constant before (Kenner TI
- appeared before (Kammer, Tholey)


• appeared before (Kammer, Tholey)






Grids of width k have outer (2k-2)-planar drawing.

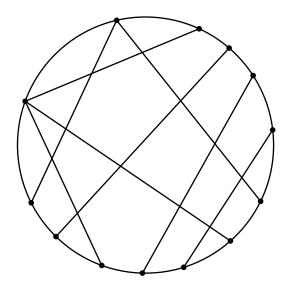


Green paths are sufficiently long.

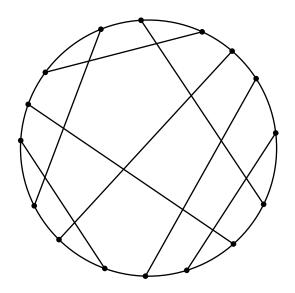
Green paths are sufficiently long.

Orange vertices are separated by green paths.

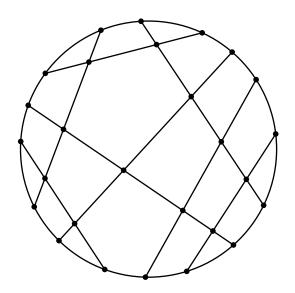
Upper bounds for outer min-k-planar graphs

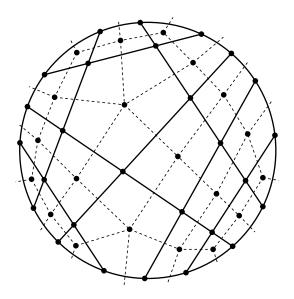

Theorem

Let G be an outer min-k-planar graph. Then $tw(G) \leq 3 \cdot \lfloor k/2 \rfloor + 4$.

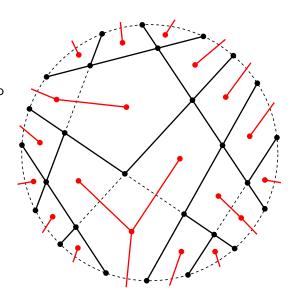

Theorem

Let G be an outer min-k-planar graph. Then $sn(G) \leq 2 \cdot \lfloor k/2 \rfloor + 4$.

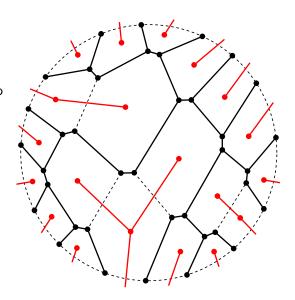

We consider a graph that is maximal


We consider a graph that is maximal and expanded.

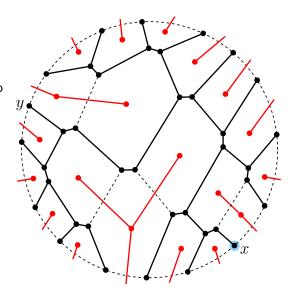
We consider a graph that is maximal and expanded.



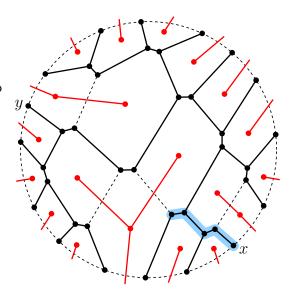
We consider a graph that is maximal and expanded.


We consider a graph that is maximal and expanded.

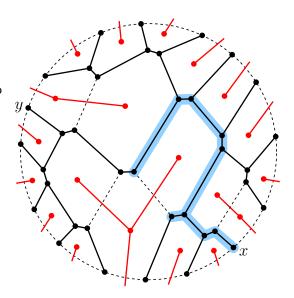
Distance of any red vertex to the outer face is $\leq k/2 + 1$.


We consider a graph that is maximal and expanded.

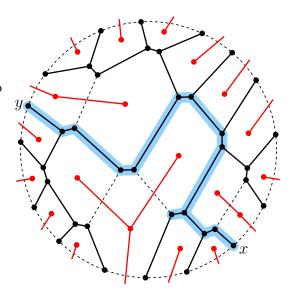
Distance of any red vertex to the outer face is $\leq k/2 + 1$.


We consider a graph that is maximal and expanded.

Distance of any red vertex to the outer face is $\leq k/2 + 1$.


We consider a graph that is maximal and expanded.

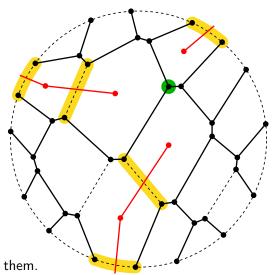
Distance of any red vertex to the outer face is $\leq k/2 + 1$.


We consider a graph that is maximal and expanded.

Distance of any red vertex to the outer face is $\leq k/2 + 1$.

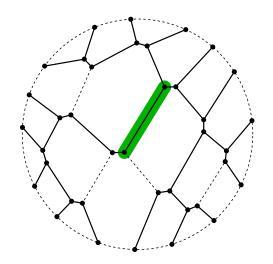
We consider a graph that is maximal and expanded.

Distance of any red vertex to the outer face is $\leq k/2 + 1$.

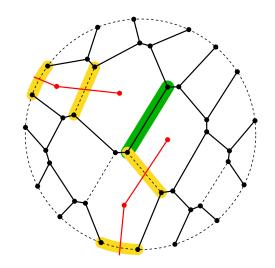

We consider a graph that is maximal and expanded.

Distance of any red vertex to the outer face is $\leq k/2 + 1$.

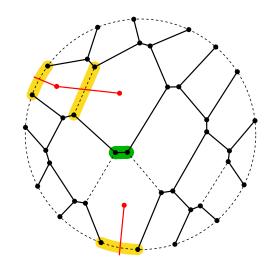
We place vertex *x* into bags corresponding to the blue path.


Extra vertices placed into the green bag correspond to yellow edges.

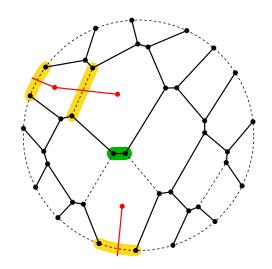
There are at most 1.5k + 3 of them.


Structural property:

upper bound the adhesion of the tree decomposition


Structural property:

upper bound the adhesion of the tree decomposition by $2 + 2 \cdot (k/2 + 1)$.

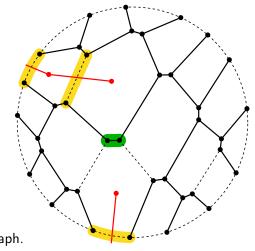

Structural property:

upper bound the adhesion of the tree decomposition by $2 + 2 \cdot (k/2 + 1)$.

Structural property: upper bound the adhesion of the tree decomposition by $2 + 2 \cdot (k/2 + 1)$.

Problem: this works only for expanded graphs.

Structural property: upper bound the adhesion


of the tree decomposition by $2 + 2 \cdot (k/2 + 1)$.

Problem: this works only for expanded graphs.

Revert expansion:

obtain a tree decomposition for every outer min-k-planar graph.

Structural property still holds.

