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What is the paper about?

▶ Outerplanar graphs
We want: Internally convex drawings

▶ Outerpaths
We want: Internally strictly convex drawings

BDFLS (2025)

Every n-vertex outerpath whose internal faces have size at most k admits
an internally-strictly-convex grid drawing in O(nk2) area.

This paper:
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subtree β of π, |α|p + |β|p ≤ (1− δ)np, for some constant 0 < δ < 1.
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Biedl, Liotta, Lynch, Montecchiani (BLLM-2024)

Let p = 0.48. Given any rooted tree with n vertices, there exists a
root-to-leaf path π such that for any left subtree α and for any right
subtree β of π, |α|p + |β|p ≤ (1− δ)np, for some constant 0 < δ < 1.

Theorem

Let f (d) be the recursive function defined on N0 as follows:

▶ f (0) = 0 and f (1) = 1.

▶ f (d) = max
da,db∈N0:d

p
a +d

p
b
≤(1−δ)dp

{f (da) + f (db)}+ 2
√
d d ≥ 2

Then, f (d) ≤ c
√
d .

[c = 2/δ, c > 2]
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▶ Trasition edges

▶ k ≈ Number of transition edges

▶ We will distinguish cases on whether k ≤
√
n or not.
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▶ uv -separated drawing
u v

π

e∗1

f1

▶ Property-W: Every vertical line contains at least a vertex of G

h0

h1

▶ Property-H: Every horizontal line contains at least a vertex of G and
the height of the drawing is at most f (d)

1. u and v lie on h0

2. All neighbors of u and v
lie on h1

3. All other vertices lie
on or below h1

4. All vertices different than u
lie to its right

5. All vertices different than v
lie to its left
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The Algorithm...

▶ Step 1
Find an outerpath based on
thm BLLM-2024.

Let k be the number of
transition edges on it.
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The Algorithm...

▶ Step 2 ........ Case 1: k ≤
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• Each sub-drawing satisfies:
– Property-W
– Property-H
– is uv -separated

• O(n
√
d) = O(n

√
n) area
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The Algorithm...

▶ Step 2 ........ Case 2: k >
√
n
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The Algorithm...

▶ Step 2 ........ Case 2: k >
√
n

Lemma

There exists an index t with 2 ≤ t ≤ 1 +
√
n such that |Vt | ≤

√
n.
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Open Problems

Our results:
▶ Outerplanar graphs: O(n1.5) area internally convex drawing

▶ Outerpaths: O(nk2) area internally strictly convex drawing.

▶ Close the gap between the Ω(n) lower bound and the O(n1.5) upper
bound for internally convex drawing of outerplanar graphs.

▶ Can we build o(n3)-area internally strictly convex drawings for
outerplanar graphs with internal faces of size at most k?

▶ Can we build O(n2)-area internally strictly convex drawings for
outerplanar graphs with internal faces of size at most 4?


