Internally-Convex Drawings of Outerplanar Graphs in Small Area

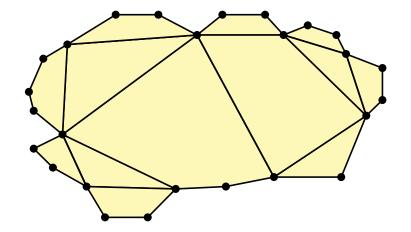
Michael A. Bekos, Giordano Da Lozzo, Fabrizio Frati, Giuseppe Liotta, **Antonios Symvonis**

Graph Drawing 2025

What is the paper about?

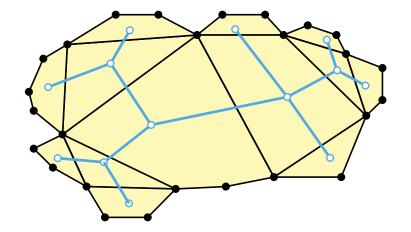
► Planar straight-line grid drawings

- Planar straight-line grid drawings
- Outerplanar graphsWe want: Internally convex drawings

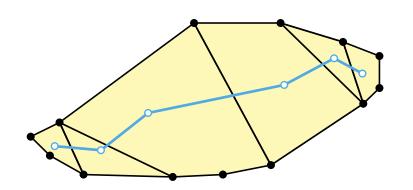


Introduction

- Planar straight-line grid drawings
- Outerplanar graphsWe want: Internally convex drawings



- Planar straight-line grid drawings
- Outerplanar graphsWe want: Internally convex drawings
- Outerpaths
 We want: Internally strictly convex drawings



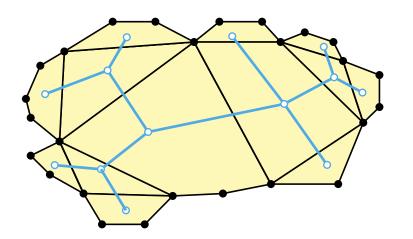
What is the paper about?

Outerplanar graphsWe want: Internally convex drawings

We want: Internally strictly convex drawings

Question:

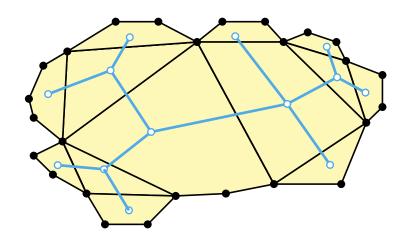
How big is the drawing?



What is the paper about?

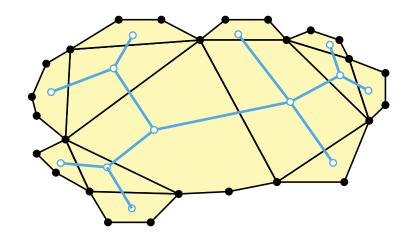
Outerplanar graphsWe want: Internally convex drawings

We want: Internally strictly convex drawings



What is the paper about?

Outerplanar graphs
We want: Internally convex drawings



Outerpaths

We want: Internally strictly convex drawings

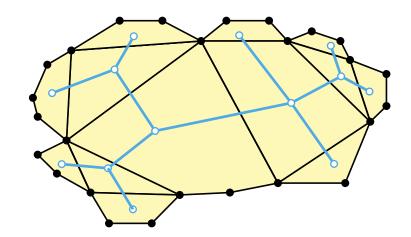
The State of the Art:

Chrobak and Kant (1997) Felsner (2001)

Every 3-connected plane graph admits a convex planar straight-line grid drawing of $O(n^2)$ area

What is the paper about?

- Outerplanar graphs
 We want: Internally convex drawings
- Outerpaths
 We want: Internally strictly convex drawings



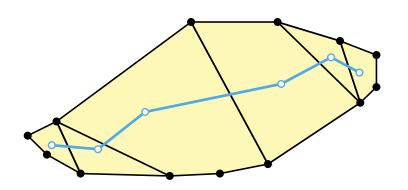
This paper:

BDFLS (2025)

Every *n*-vertex outerplane graph admits an embedding-preserving internally-convex grid drawing in $O(n^{1.5})$ area

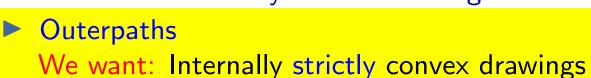
What is the paper about?

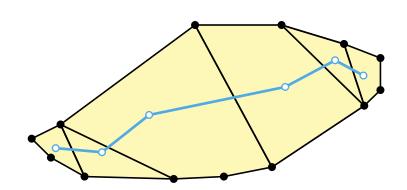
Outerplanar graphs
We want: Internally convex drawings



What is the paper about?

Outerplanar graphsWe want: Internally convex drawings



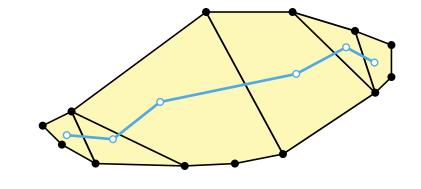


The State of the Art:

Every *n*-vertex outerplane graph admits an embedding-preserving internally strictly-convex grid drawing in $O(n^3)$ area

What is the paper about?

Outerplanar graphsWe want: Internally convex drawings



Outerpaths

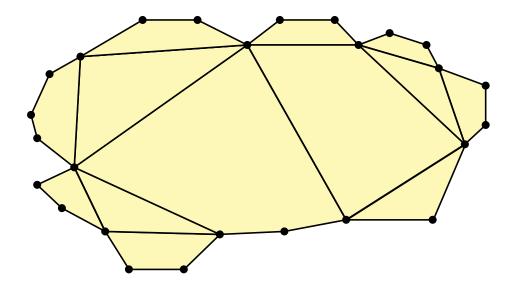
We want: Internally strictly convex drawings

This paper:

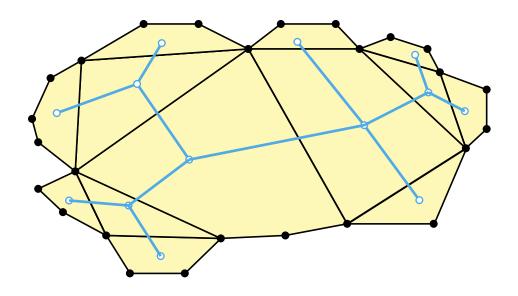
BDFLS (2025)

Every *n*-vertex outerpath whose internal faces have size at most k admits an internally-strictly-convex grid drawing in $O(nk^2)$ area.

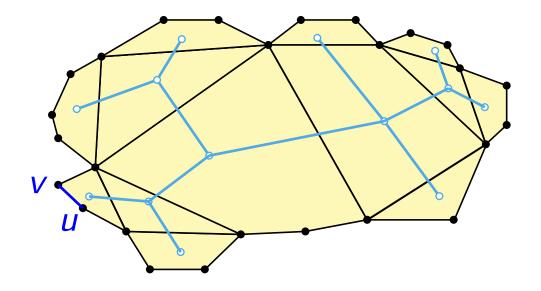
Outerplanar graph



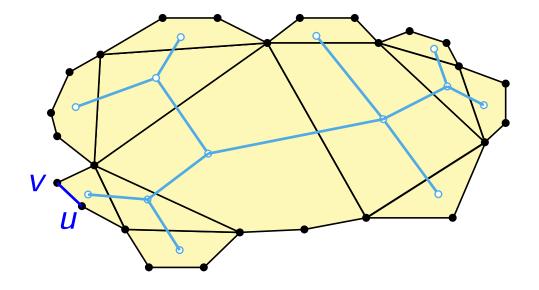
- Outerplanar graph
- ► Weak dual



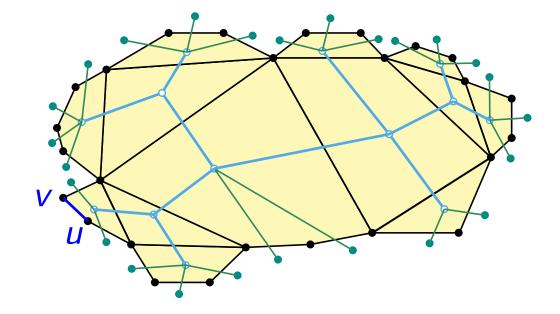
- Outerplanar graph
- ► Weak dual
- ► G[u, v]: Graph G routed at (u, v)



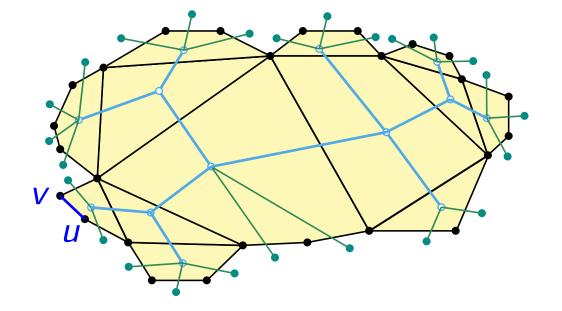
- Outerplanar graph
- Weak dual
- ► G[u, v]: Graph G routed at (u, v)
- ► Extended weak dual tree *T*



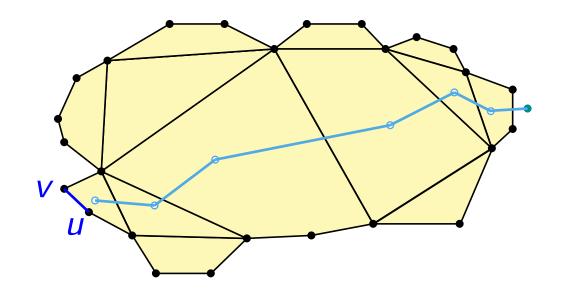
- Outerplanar graph
- Weak dual
- ► G[u, v]: Graph G routed at (u, v)
- ► Extended weak dual tree *T*



- Outerplanar graph
- Weak dual
- ► G[u, v]: Graph G routed at (u, v)
- Extended weak dual tree T $|T| = d \le 2n - 3$

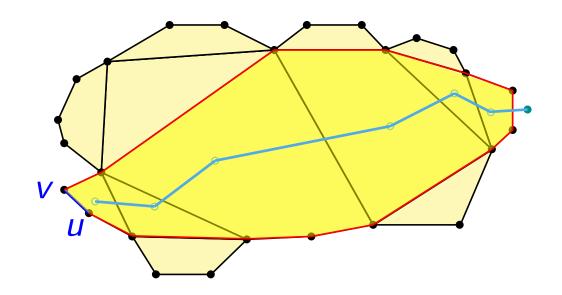


- Outerplanar graph
- Weak dual
- ► G[u, v]: Graph G routed at (u, v)
- Extended weak dual tree T $|T| = d \le 2n 3$



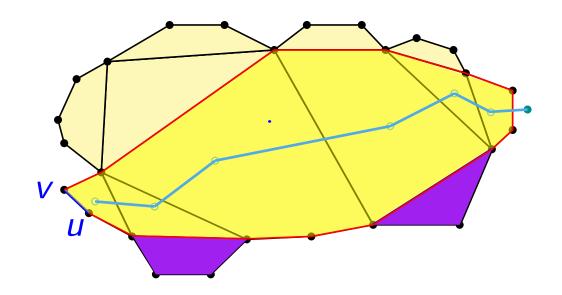
 $ightharpoonup \pi = (f_1, f_2, \dots, f_p)$: a root-to-leaf path in T

- Outerplanar graph
- Weak dual
- ► G[u, v]: Graph G routed at (u, v)
- Extended weak dual tree T $|T| = d \le 2n - 3$



 $\pi = (f_1, f_2, \dots, f_p)$: a root-to-leaf path in T $G[\pi]$: the outerpath dual to π .

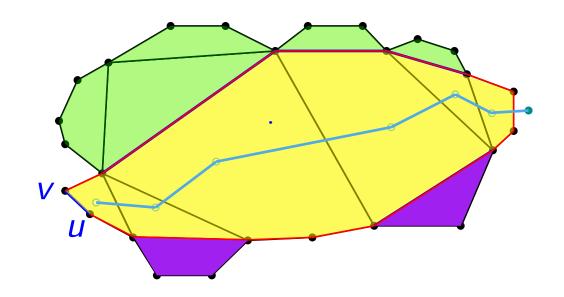
- Outerplanar graph
- Weak dual
- ► G[u, v]: Graph G routed at (u, v)
- Extended weak dual tree T $|T| = d \le 2n - 3$



 $\pi = (f_1, f_2, \dots, f_p)$: a root-to-leaf path in T $G[\pi]$: the outerpath dual to π .

Left subgraphs of G at π

- Outerplanar graph
- Weak dual
- ► G[u, v]: Graph G routed at (u, v)
- Extended weak dual tree T $|T| = d \le 2n - 3$



 $\pi = (f_1, f_2, \dots, f_p)$: a root-to-leaf path in T $G[\pi]$: the outerpath dual to π .

Left subgraphs of G at π

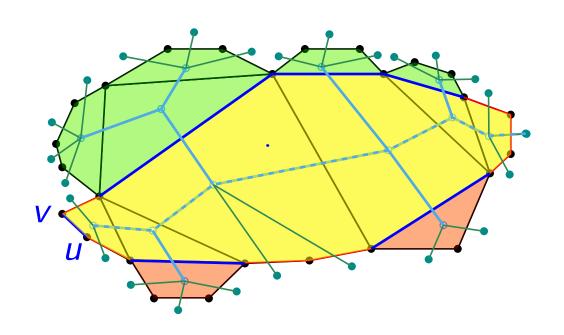
Right subgraphs of G at π

Biedl, Liotta, Lynch, Montecchiani (BLLM-2024)

Let p=0.48. Given any rooted tree with n vertices, there exists a root-to-leaf path π such that for any left subtree α and for any right subtree β of π , $|\alpha|^p + |\beta|^p \le (1-\delta)n^p$, for some constant $0 < \delta < 1$.

Biedl, Liotta, Lynch, Montecchiani (BLLM-2024)

Let p=0.48. Given any rooted tree with n vertices, there exists a root-to-leaf path π such that for any left subtree α and for any right subtree β of π , $|\alpha|^p + |\beta|^p \le (1-\delta)n^p$, for some constant $0 < \delta < 1$.



Biedl, Liotta, Lynch, Montecchiani (BLLM-2024)

Let p=0.48. Given any rooted tree with n vertices, there exists a root-to-leaf path π such that for any left subtree α and for any right subtree β of π , $|\alpha|^p + |\beta|^p \le (1-\delta)n^p$, for some constant $0 < \delta < 1$.

Theorem

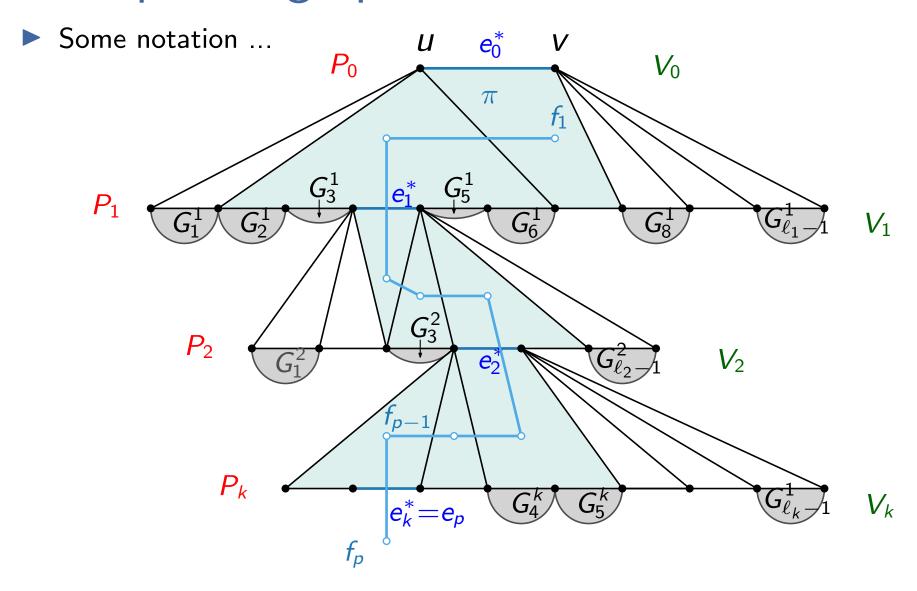
Let f(d) be the recursive function defined on \mathbb{N}_0 as follows:

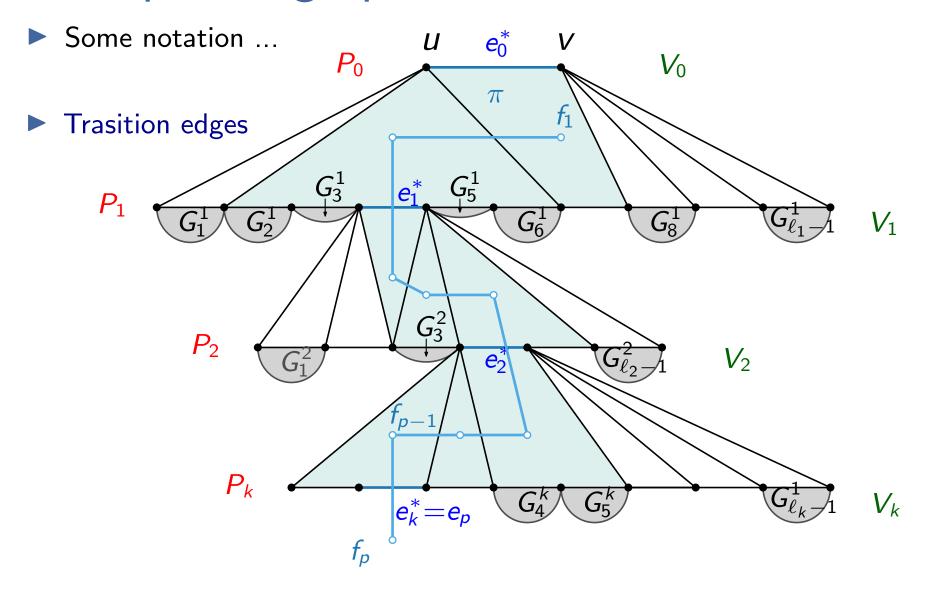
$$ightharpoonup f(0) = 0 \text{ and } f(1) = 1.$$

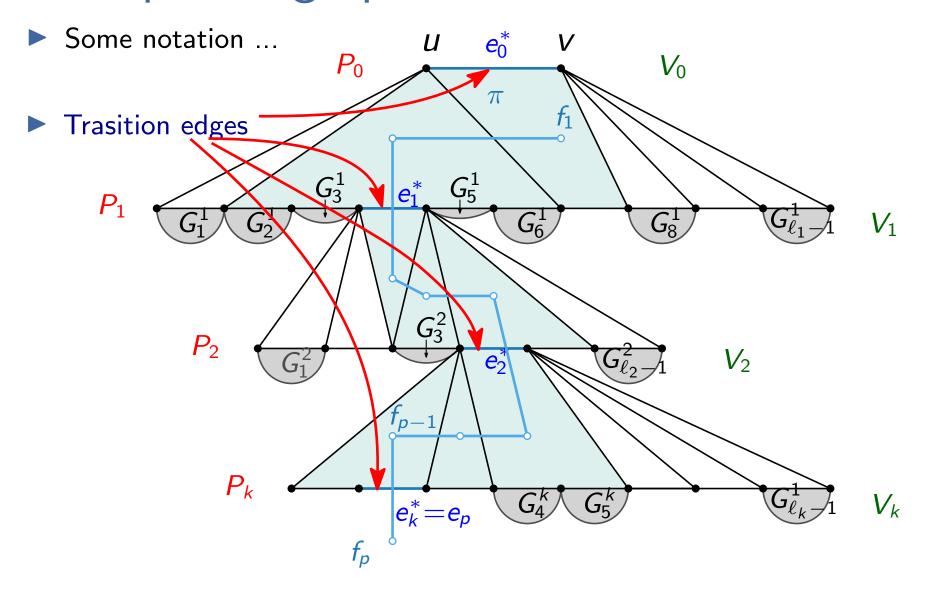
Then, $f(d) \leq c\sqrt{d}$.

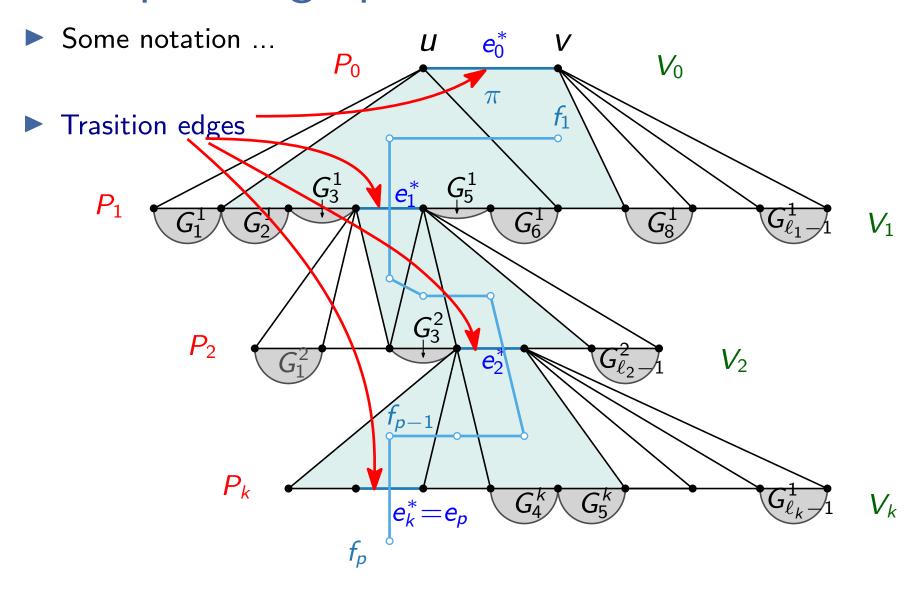
 $c = 2/\delta, c > 2$

Some notation ...

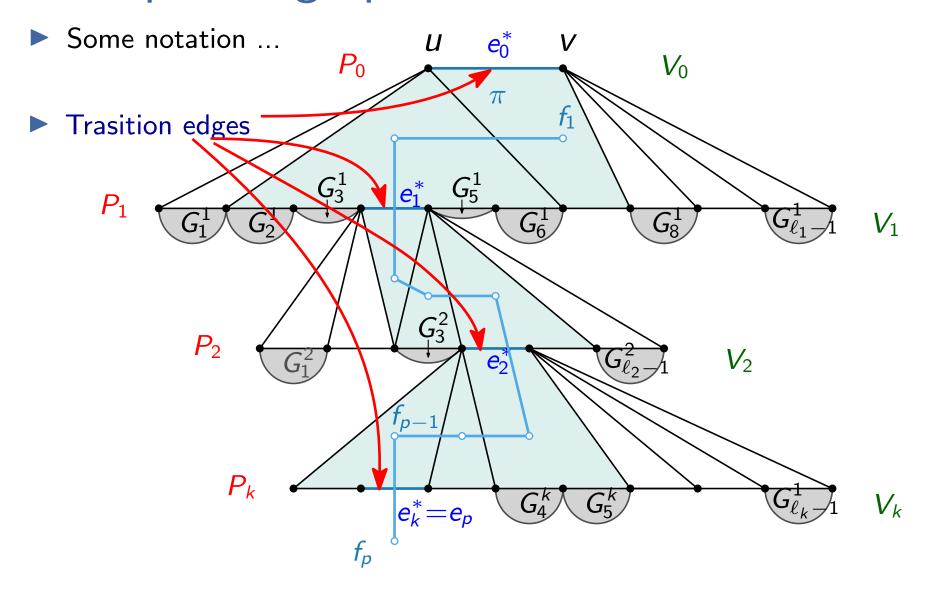








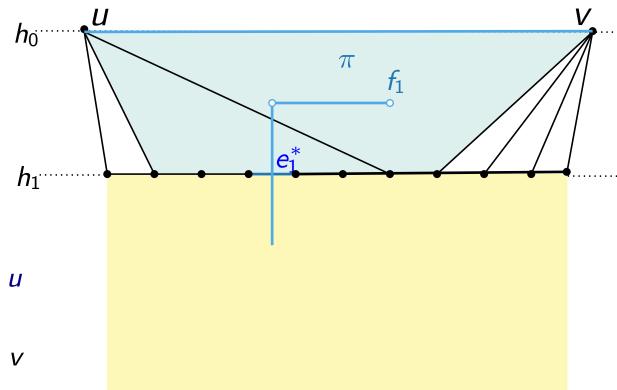
 $k \approx Number of transition edges$



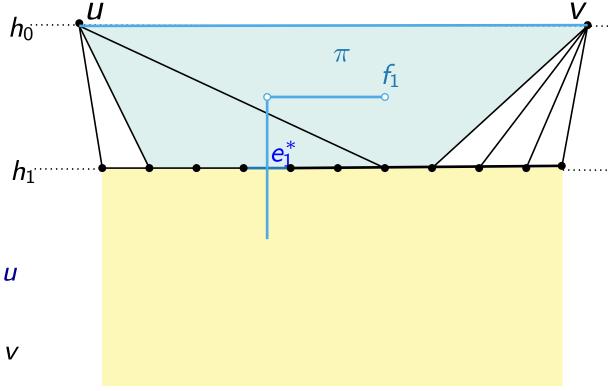
- $k \approx Number of transition edges$
- ▶ We will distinguish cases on whether $k \le \sqrt{n}$ or not.

uv-separated drawing

- uv-separated drawing
 - 1. u and v lie on h_0
 - 2. All neighbors of u and v lie on h_1
 - 3. All other vertices lie on or below h_1
 - 4. All vertices different than *u* lie to its right
 - 5. All vertices different than *v* lie to its left

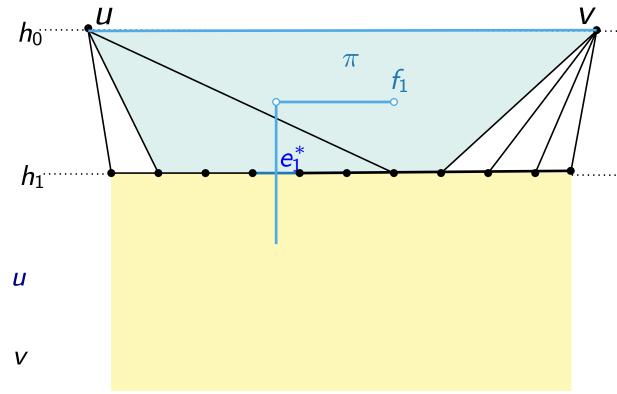


- uv-separated drawing
 - 1. u and v lie on h_0
 - 2. All neighbors of u and v lie on h_1
 - 3. All other vertices lie on or below h_1
 - 4. All vertices different than *u* lie to its right
 - 5. All vertices different than *v* lie to its left



Property-W: Every vertical line contains at least a vertex of G

- uv-separated drawing
 - 1. u and v lie on h_0
 - 2. All neighbors of u and v lie on h_1
 - 3. All other vertices lie on or below h_1
 - 4. All vertices different than *u* lie to its right
 - 5. All vertices different than *v* lie to its left



- ightharpoonup Property-W: Every vertical line contains at least a vertex of G
- Property-H: Every horizontal line contains at least a vertex of G and the height of the drawing is at most f(d)

The Algorithm...

The Algorithm...

► Step 1

The Algorithm...

► Step 1

Find an outerpath based on thm BLLM-2024.

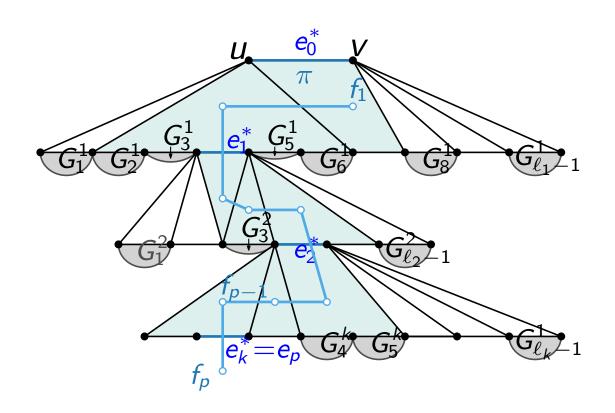
Let *k* be the number of transition edges on it.

The Algorithm...

► Step 1

Find an outerpath based on thm BLLM-2024.

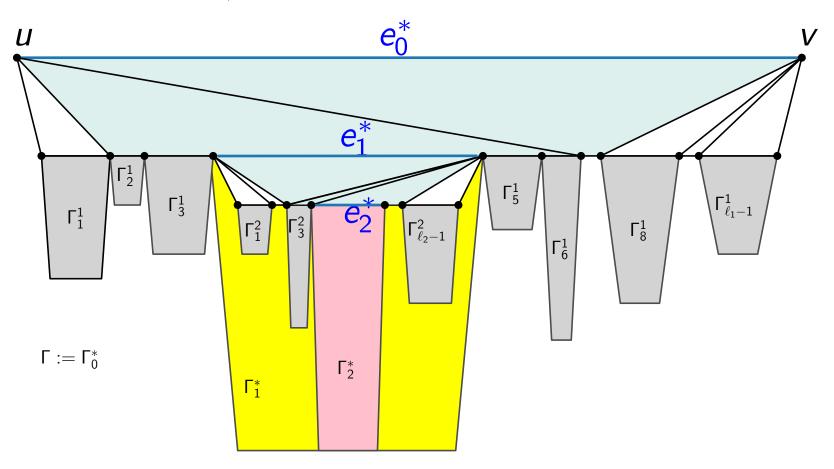
Let *k* be the number of transition edges on it.



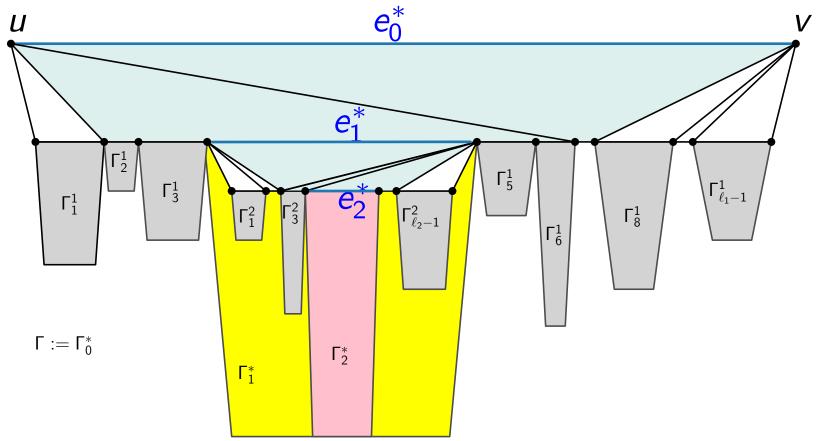
The Algorithm...

The Algorithm...

The Algorithm...

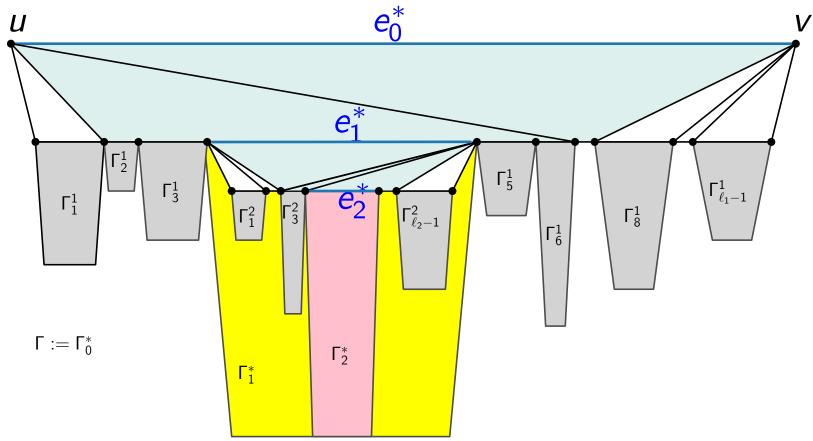


The Algorithm...



- Each sub-drawing satisfies:
 - Property-W
 - Property-H
 - is uv-separated

The Algorithm...



- Each sub-drawing satisfies:
 - Property-W
 - Property-H
 - is uv-separated

•
$$O(n\sqrt{d}) = O(n\sqrt{n})$$
 area

The Algorithm...

The Algorithm...

The Algorithm...

► Step 2 Case 2: $k > \sqrt{n}$

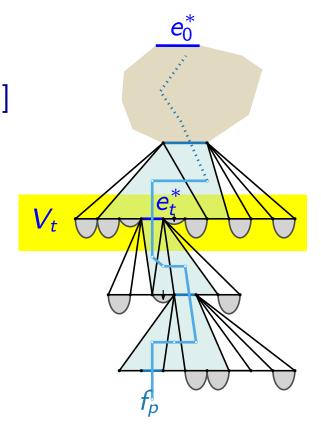
Lemma

There exists an index t with $2 \le t \le 1 + \sqrt{n}$ such that $|V_t| \le \sqrt{n}$.

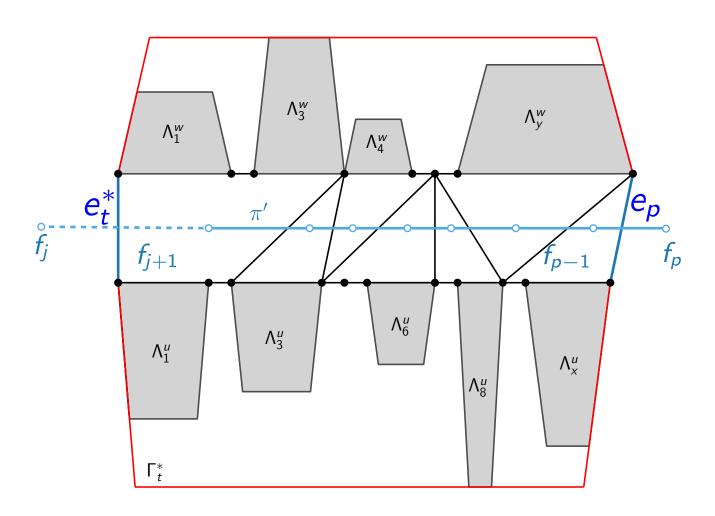
2.a Choose *t* such that $|V_t| \leq \sqrt{n}$

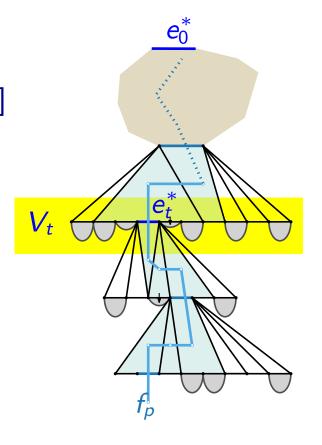
- **2.a** Choose *t* such that $|V_t| \leq \sqrt{n}$
- **2.b** Draw G_t^* [i.e., the subgraph of G rooted at e_t^*]

- **2.a** Choose *t* such that $|V_t| \leq \sqrt{n}$
- **2.b** Draw G_t^* [i.e., the subgraph of G rooted at e_t^*]

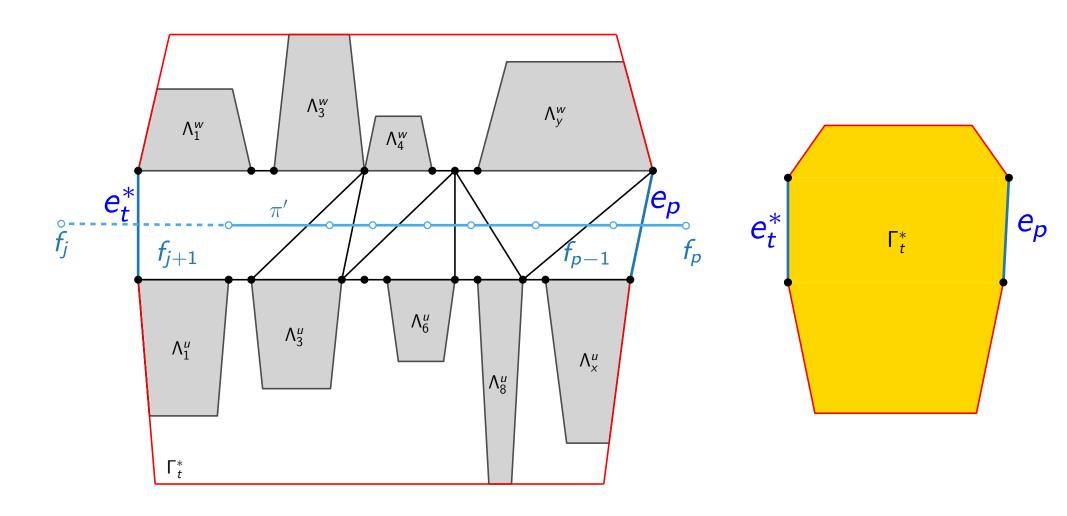


- **2.a** Choose *t* such that $|V_t| \leq \sqrt{n}$
- **2.b** Draw G_t^* [i.e., the subgraph of G rooted at e_t^*]



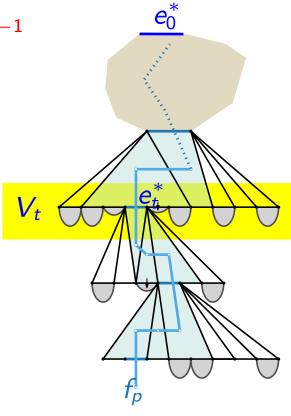


- **2.a** Choose *t* such that $|V_t| \leq \sqrt{n}$
- **2.b** Draw G_t^* [i.e., the subgraph of G rooted at e_t^*]



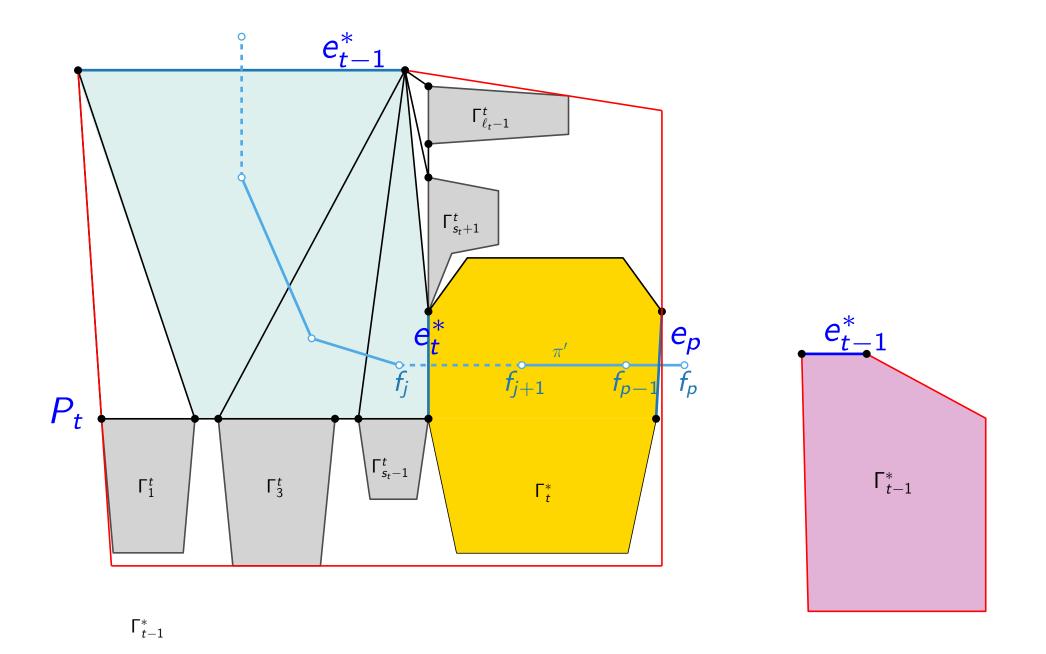
2.c Augment the drawing of G_t^* to a drawing of G_{t-1}^*

2.c Augment the drawing of G_t^* to a drawing of G_{t-1}^*



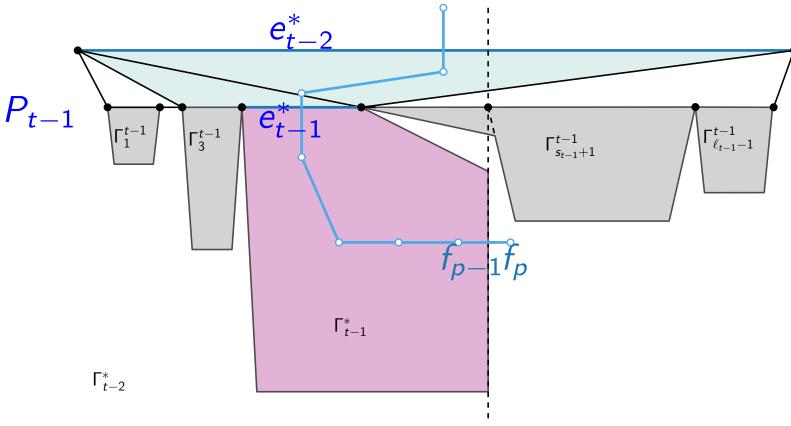
2.c Augment the drawing of G_t^* to a drawing of G_{t-1}^* $\Gamma^t_{\ell_t-1}$ $\Gamma^t_{s_t+1}$ P_t $\Gamma^t_{s_t-1}$ Γ_3^t Γ_1^t Γ_t^*

2.c Augment the drawing of G_t^* to a drawing of G_{t-1}^*

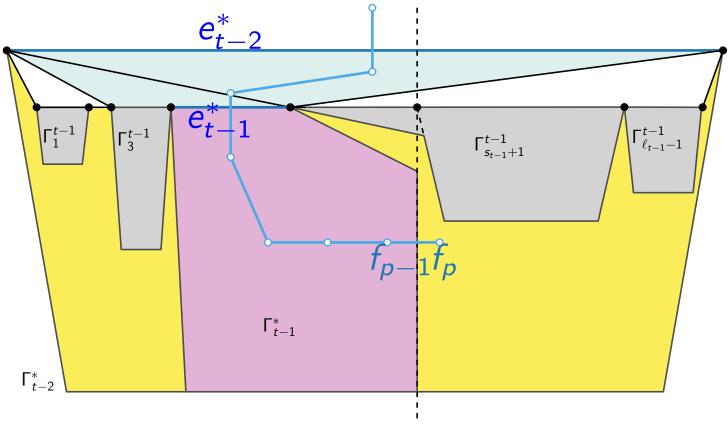


2.d Augment the drawing of G_{t-1}^* to a drawing of G_{t-2}^*

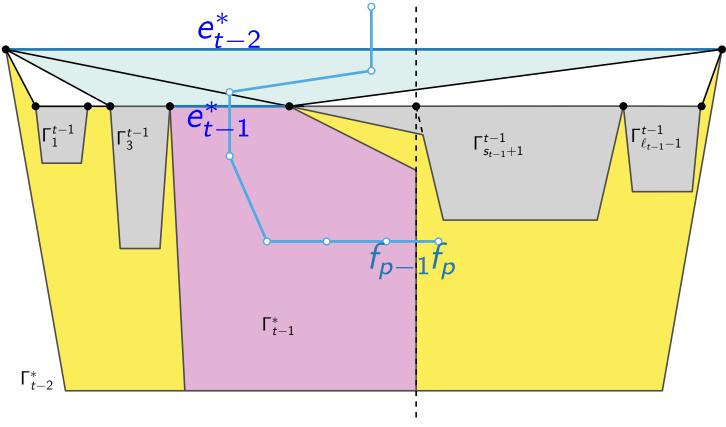
2.d Augment the drawing of G_{t-1}^* to a drawing of G_{t-2}^*



2.d Augment the drawing of G_{t-1}^* to a drawing of G_{t-2}^*



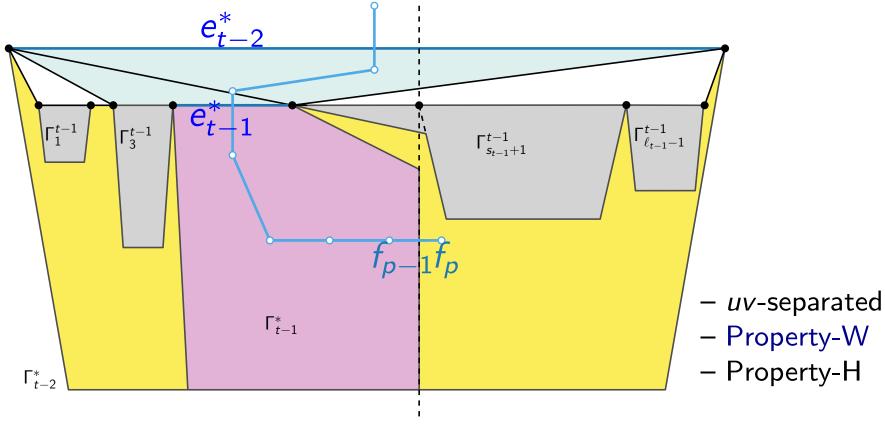
2.d Augment the drawing of G_{t-1}^* to a drawing of G_{t-2}^*



2.e Continue iteratively to build the drawing of G_0

[as in case 1]

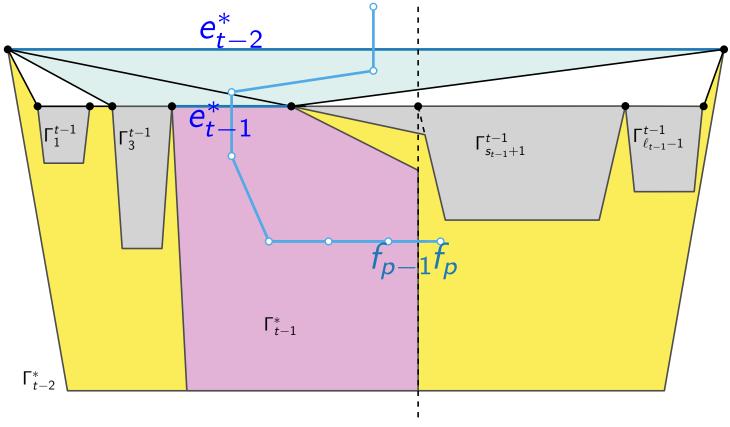
2.d Augment the drawing of G_{t-1}^* to a drawing of G_{t-2}^*



2.e Continue iteratively to build the drawing of G_0

[as in case 1]

2.d Augment the drawing of G_{t-1}^* to a drawing of G_{t-2}^*



2.e Continue iteratively to build the drawing of G_0

[as in case 1]

Theorem

Every n-vertex outerplane graph admits an embedding-preserving internally-convex grid drawing in $O(n^{1.5})$ area

Our results:

- ▶ Outerplanar graphs: $O(n^{1.5})$ area internally convex drawing
- ▶ Outerpaths: $O(nk^2)$ area internally strictly convex drawing.

Our results:

- ▶ Outerplanar graphs: $O(n^{1.5})$ area internally convex drawing
- ▶ Outerpaths: $O(nk^2)$ area internally strictly convex drawing.

Open Problems

Our results:

- ▶ Outerplanar graphs: $O(n^{1.5})$ area internally convex drawing
- ▶ Outerpaths: $O(nk^2)$ area internally strictly convex drawing.

Open Problems

► Close the gap between the $\Omega(n)$ lower bound and the $O(n^{1.5})$ upper bound for internally convex drawing of outerplanar graphs.

Our results:

- ▶ Outerplanar graphs: $O(n^{1.5})$ area internally convex drawing
- ▶ Outerpaths: $O(nk^2)$ area internally strictly convex drawing.

Open Problems

- Close the gap between the $\Omega(n)$ lower bound and the $O(n^{1.5})$ upper bound for internally convex drawing of outerplanar graphs.
- ► Can we build $o(n^3)$ -area internally strictly convex drawings for outerplanar graphs with internal faces of size at most k?

Our results:

- ▶ Outerplanar graphs: $O(n^{1.5})$ area internally convex drawing
- ► Outerpaths: $O(nk^2)$ area internally strictly convex drawing.

Open Problems

- ► Close the gap between the $\Omega(n)$ lower bound and the $O(n^{1.5})$ upper bound for internally convex drawing of outerplanar graphs.
- ► Can we build $o(n^3)$ -area internally strictly convex drawings for outerplanar graphs with internal faces of size at most k?
- Can we build $O(n^2)$ -area internally strictly convex drawings for outerplanar graphs with internal faces of size at most 4?