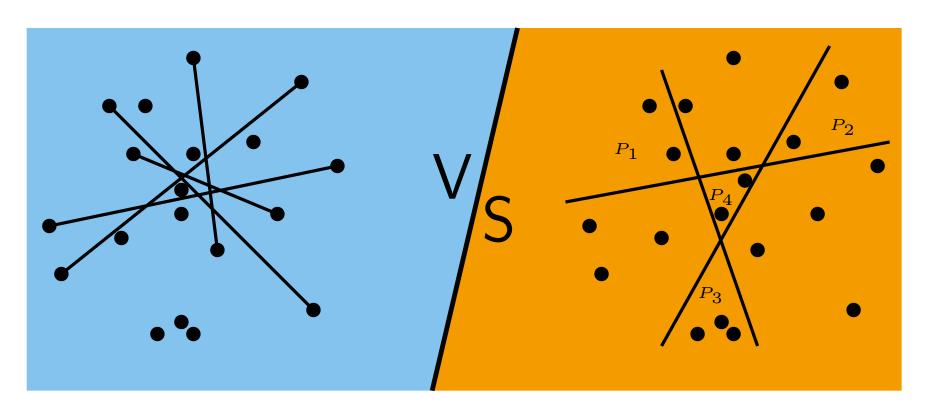
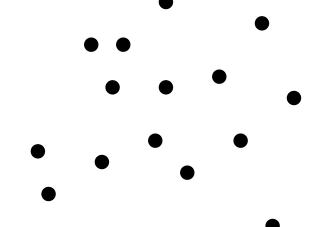
Crossing and non-crossing families

Todor Antić, Martin Balko and Birgit Vogtenhuber GD 2025



 $P o \mathsf{Set}$ of points in general position in \mathbb{R}^2

 $P \to \mathsf{Set}$ of points in general position in \mathbb{R}^2

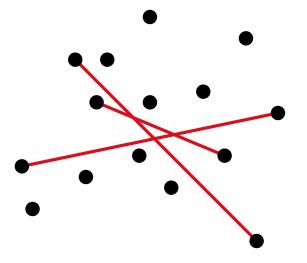


 $P o \mathsf{Set}$ of points in general position in \mathbb{R}^2

Crossing family in $P \to \operatorname{set}$ of pairwise crossing segments between points in P

 $P o \mathsf{Set}$ of points in general position in \mathbb{R}^2

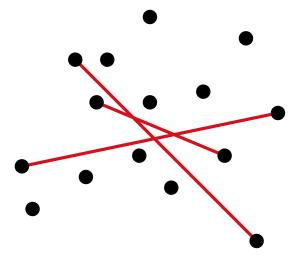
Crossing family in $P \to \operatorname{set}$ of pairwise crossing segments between points in P



 $P o \mathsf{Set}$ of points in general position in \mathbb{R}^2

Crossing family in $P \to \operatorname{set}$ of pairwise crossing segments between points in P

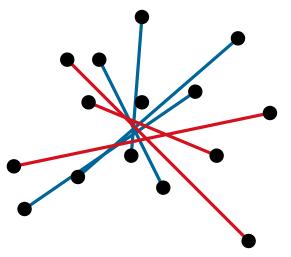
f(P) =size of max crossing family in P



 $P o \mathsf{Set}$ of points in general position in \mathbb{R}^2

Crossing family in $P \to \operatorname{set}$ of pairwise crossing segments between points in P

f(P) =size of max crossing family in P

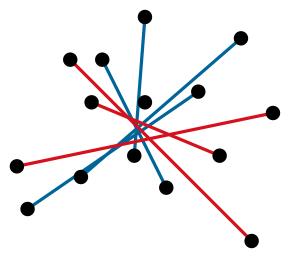


 $P o \mathsf{Set}$ of points in general position in \mathbb{R}^2

Crossing family in $P \to \text{set of pairwise}$ crossing segments between points in P

f(P) =size of max crossing family in P

$$f(n) = \min_{|P|=n} (f(P))$$

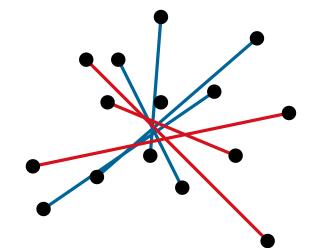


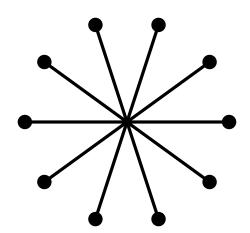
 $P o \mathsf{Set}$ of points in general position in \mathbb{R}^2

Crossing family in $P \to \operatorname{set}$ of pairwise crossing segments between points in P

f(P) =size of max crossing family in P

$$f(n) = \min_{|P|=n} (f(P))$$



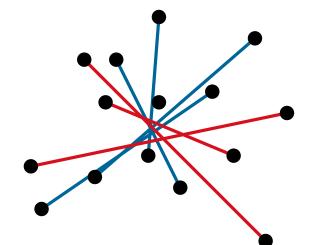


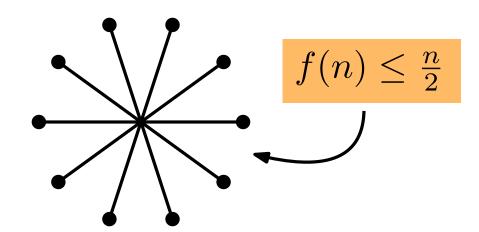
 $P o \mathsf{Set}$ of points in general position in \mathbb{R}^2

Crossing family in $P \to \operatorname{set}$ of pairwise crossing segments between points in P

 $f(P)={\rm size}\ {\rm of}\ {\rm max}\ {\rm crossing}\ {\rm family}\ {\rm in}\ P$

$$f(n) = \min_{|P|=n} (f(P))$$





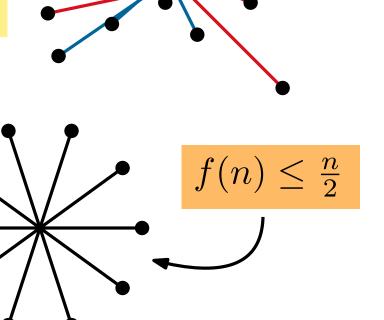
 $P o \mathsf{Set}$ of points in general position in \mathbb{R}^2

Crossing family in $P \to \operatorname{set}$ of pairwise crossing segments between points in P

 $f(P)={\rm size}\ {\rm of}\ {\rm max}\ {\rm crossing}\ {\rm family}\ {\rm in}\ P$

$$f(n) = \min_{|P|=n} (f(P))$$

Big question: Is f(n) linear?

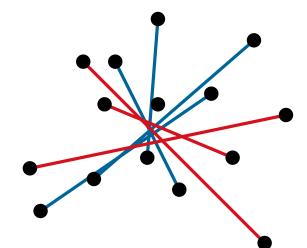


 $P \to \mathsf{Set}$ of points in general position in \mathbb{R}^2

Crossing family in $P \to \operatorname{set}$ of pairwise crossing segments between points in P

$$f(P)={\rm size}\ {\rm of}\ {\rm max}\ {\rm crossing}\ {\rm family}\ {\rm in}\ P$$

$$f(n) = \min_{|P|=n} (f(P))$$



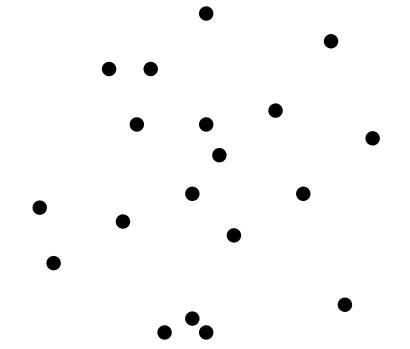
Big question: Is f(n) linear?



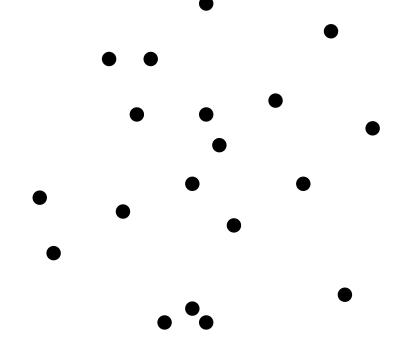
Known:

- $f(n) \ge \frac{n}{2^{O(\sqrt{\log n})}}$ [Pach, Rubin, Tardos]
- \blacksquare $f(n) \leq \lceil \frac{8n}{41} \rceil$ [Aichholzer et al.]

 $P o \mathsf{Set}$ of points in general position in \mathbb{R}^2



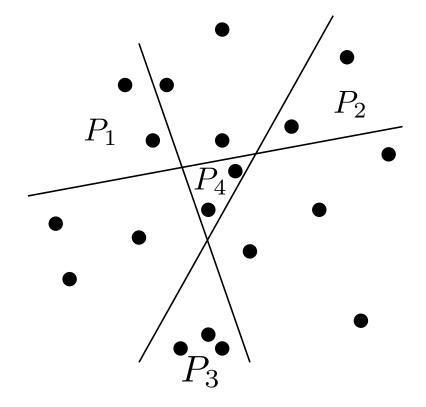
P o Set of points in general position in \mathbb{R}^2 Non-crossing family of size k in P:



 $P o \mathsf{Set}$ of points in general position in \mathbb{R}^2

Non-crossing family of size k in P:

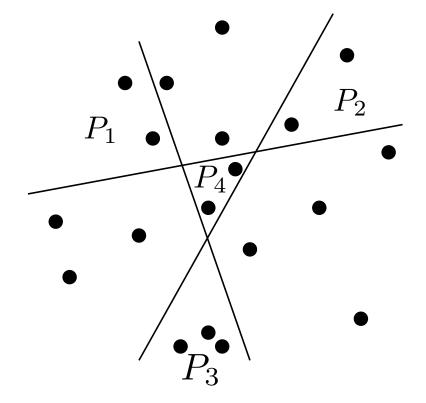
■ Subsets P_1, P_2, P_3, P_4 of P



 $P o \mathsf{Set}$ of points in general position in \mathbb{R}^2

Non-crossing family of size k in P:

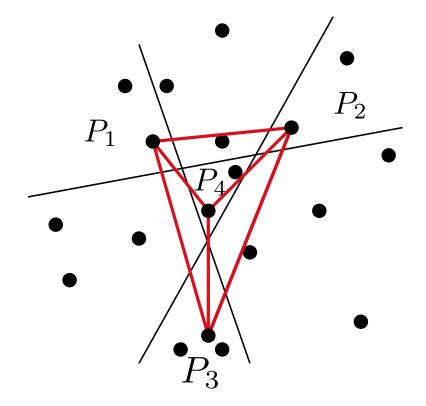
- Subsets P_1, P_2, P_3, P_4 of P
- \blacksquare Each P_i has at least k points



 $P o \mathsf{Set}$ of points in general position in \mathbb{R}^2

Non-crossing family of size k in P:

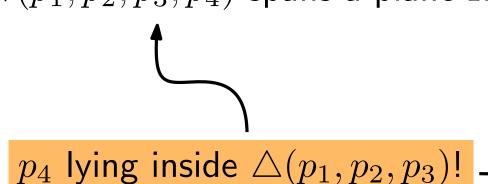
- \blacksquare Subsets P_1, P_2, P_3, P_4 of P
- \blacksquare Each P_i has at least k points
- lacksquare $\forall (p_1, p_2, p_3, p_4)$ spans a plane K_4

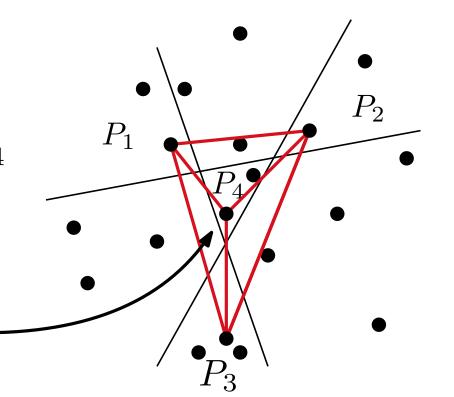


 $P o \mathsf{Set}$ of points in general position in \mathbb{R}^2

Non-crossing family of size k in P:

- Subsets P_1, P_2, P_3, P_4 of P
- \blacksquare Each P_i has at least k points
- lacksquare $\forall (p_1, p_2, p_3, p_4)$ spans a plane K_4

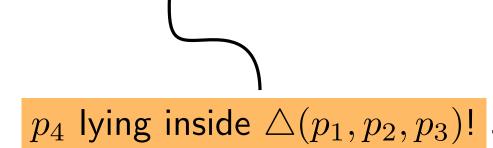


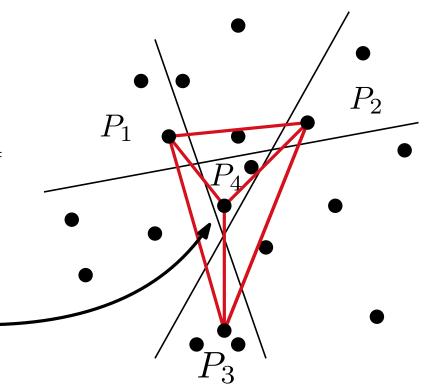


 $P o \mathsf{Set}$ of points in general position in \mathbb{R}^2

Non-crossing family of size k in P:

- Subsets P_1, P_2, P_3, P_4 of P
- \blacksquare Each P_i has at least k points
- lacksquare $\forall (p_1, p_2, p_3, p_4)$ spans a plane K_4





Question:

If P does not have a non-crossing family of size m, how large crossing family can we find in P?

Complete geometric graph \rightarrow drawing of K_n with edges drawn as line segments between vertices

Complete geometric graph \rightarrow drawing of K_n with edges drawn as line segments between vertices

Question: [2006, Bose, Hurtado, Rivera-Campo, and Wood] Is there a constant c > 0 such that every CGG on n vertices can be decomposed into cn plane subgraphs?

Complete geometric graph \rightarrow drawing of K_n with edges drawn as line segments between vertices

Question: [2006, Bose, Hurtado, Rivera-Campo, and Wood] Is there a constant c > 0 such that every CGG on n vertices can be decomposed into cn plane subgraphs?

Known:

Complete geometric graph \rightarrow drawing of K_n with edges drawn as line segments between vertices

Question: [2006, Bose, Hurtado, Rivera-Campo, and Wood] Is there a constant c > 0 such that every CGG on n vertices can be decomposed into cn plane subgraphs?

Known:

■ If the vertex set has a linear-sized crossing family then such c exists. [2006, BHR-CW]

Complete geometric graph \rightarrow drawing of K_n with edges drawn as line segments between vertices

Question: [2006, Bose, Hurtado, Rivera-Campo, and Wood] Is there a constant c > 0 such that every CGG on n vertices can be decomposed into cn plane subgraphs?

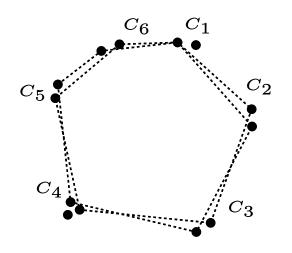
Known:

- If the vertex set has a linear-sized crossing family then such c exists. [2006, BHR-CW]
- If the vertex set has a linear-sized non-crossing family then such c exists. [GD 2023, Pach, Schnider, Saghafian]

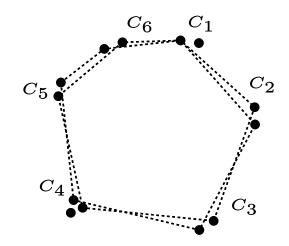
Collection of sets C_1, C_2, \ldots, C_k is a **convex bundle** if for each choice of $c_i \in C_i$, the set c_1, c_2, \ldots, c_k is in convex position.

Collection of sets C_1, C_2, \ldots, C_k is a **convex bundle** if for each choice of $c_i \in C_i$, the set c_1, c_2, \ldots, c_k is in convex position. Width of a convex bundle is $min|C_i|$.

Collection of sets C_1, C_2, \ldots, C_k is a **convex bundle** if for each choice of $c_i \in C_i$, the set c_1, c_2, \ldots, c_k is in convex position. Width of a convex bundle is $min|C_i|$.



Collection of sets C_1, C_2, \ldots, C_k is a **convex bundle** if for each choice of $c_i \in C_i$, the set c_1, c_2, \ldots, c_k is in convex position. Width of a convex bundle is $min|C_i|$.



Thm: There is a constant C>0 such that, for all positive integers m and k, every set of at least Ckm points in the plane in general position contains either a convex bundle of size k and width m or a non-crossing family of size m.

Point sets A, B are **separated** if their convex hulls are disjoint

Point sets A, B are **separated** if their convex hulls are disjoint

Thm: For every set P of $n \geq 2$ points in the plane in general position and every partition of P into two separated subsets P_1 and P_2 such that $||P_1| - |P_2|| \leq 1$, P contains a crossing family $\mathcal F$ of size at least $n/2^{O(\sqrt{\log n})}$ where each segment from $\mathcal F$ has one endpoint in P_1 and one endpoint in P_2 .

Point sets A, B are **separated** if their convex hulls are disjoint

Thm: For every set P of $n \geq 2$ points in the plane in general position and every partition of P into two separated subsets P_1 and P_2 such that $||P_1| - |P_2|| \leq 1$, P contains a crossing family $\mathcal F$ of size at least $n/2^{O(\sqrt{\log n})}$ where each segment from $\mathcal F$ has one endpoint in P_1 and one endpoint in P_2 .

Proof: Modification a result of Pach, Rubin and Tardos

Thm: There is a constant C'>0 such that, for every positive integer m, every set of $n\geq C'm$ points in the plane in general position contains either a non-crossing family of size m or a crossing family of size $n/2^{O(\sqrt{\log m})}$.

Thm: There is a constant C'>0 such that, for every positive integer m, every set of $n\geq C'm$ points in the plane in general position contains either a non-crossing family of size m or a crossing family of size $n/2^{O(\sqrt{\log m})}$.

Proof:

Thm: There is a constant C'>0 such that, for every positive integer m, every set of $n\geq C'm$ points in the plane in general position contains either a non-crossing family of size m or a crossing family of size $n/2^{O(\sqrt{\log m})}$.

Proof:

 \blacksquare If a set has a non-crossing family of size m, we're done

Thm: There is a constant C'>0 such that, for every positive integer m, every set of $n\geq C'm$ points in the plane in general position contains either a non-crossing family of size m or a crossing family of size $n/2^{O(\sqrt{\log m})}$.

Proof:

- \blacksquare If a set has a non-crossing family of size m, we're done
- If not, we use first result to get a convex bundle of size k and width m (for suitable k)

Thm: There is a constant C'>0 such that, for every positive integer m, every set of $n\geq C'm$ points in the plane in general position contains either a non-crossing family of size m or a crossing family of size $n/2^{O(\sqrt{\log m})}$.

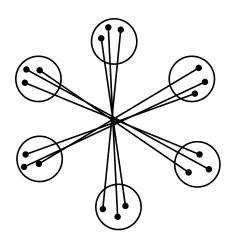
Proof:

- \blacksquare If a set has a non-crossing family of size m, we're done
- If not, we use first result to get a convex bundle of size k and width m (for suitable k)
- Pair the antipodes and use the second result

Thm: There is a constant C'>0 such that, for every positive integer m, every set of $n\geq C'm$ points in the plane in general position contains either a non-crossing family of size m or a crossing family of size $n/2^{O(\sqrt{\log m})}$.

Proof:

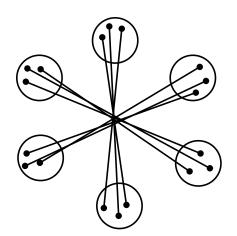
- \blacksquare If a set has a non-crossing family of size m, we're done
- If not, we use first result to get a convex bundle of size k and width m (for suitable k)
- Pair the antipodes and use the second result



Thm: There is a constant C'>0 such that, for every positive integer m, every set of $n\geq C'm$ points in the plane in general position contains either a non-crossing family of size m or a crossing family of size $n/2^{O(\sqrt{\log m})}$.

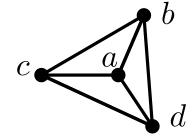
Proof:

- \blacksquare If a set has a non-crossing family of size m, we're done
- If not, we use first result to get a convex bundle of size k and width m (for suitable k)
- Pair the antipodes and use the second result
- If $k = \lfloor \frac{n}{Cm} \rfloor$ where C is constant from the first result, we're done



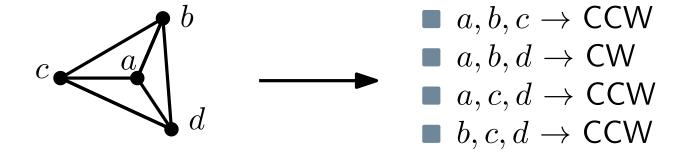
Order type of a point set $P \rightarrow$ orientations of all point triples

Order type of a point set $P \rightarrow$ orientations of all point triples



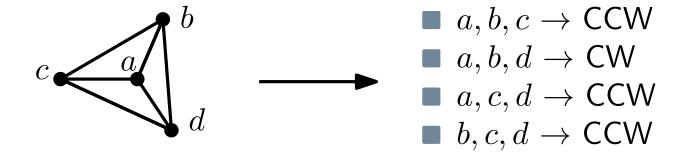
Order type of a point set $P \rightarrow$ orientations of all point triples

Order type of a point set $P \rightarrow$ orientations of all point triples



Sets A, B, C have the **same-type** property if any choice of points $a \in A, b \in B, c \in C$ has the same orientation.

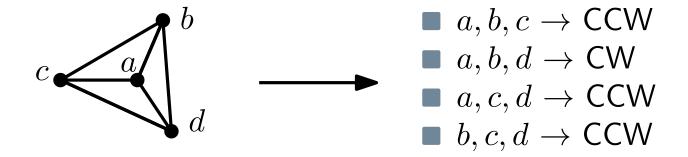
Order type of a point set $P \rightarrow$ orientations of all point triples



Sets A, B, C have the **same-type** property if any choice of points $a \in A, b \in B, c \in C$ has the same orientation.

 Y_1, \ldots, Y_r have the same-type property if any 3 of them do.

Order type of a point set $P \rightarrow$ orientations of all point triples



Sets A, B, C have the **same-type** property if any choice of points $a \in A, b \in B, c \in C$ has the same orientation.

 Y_1, \ldots, Y_r have the same-type property if any 3 of them do.

Thm: [Bárány, Valtr] There is a constant c(r) such that for any pairwise disjoint point sets X_1, X_2, \ldots, X_r in \mathbb{R}^2 whose union is in general position, there are point sets $Y_i \subseteq X_i$, with $|Y_i| \geq c(r)|X_i|$ having the same-type property.

Ç

Thm: There is a constant C>0 such that, for all positive integers m and k, every set of at least Ckm points in the plane in general position contains either a convex bundle of size k and width m or a non-crossing family of size m.

Thm: There is a constant C>0 such that, for all positive integers m and k, every set of at least Ckm points in the plane in general position contains either a convex bundle of size k and width m or a non-crossing family of size m.

Proof:

Thm: There is a constant C>0 such that, for all positive integers m and k, every set of at least Ckm points in the plane in general position contains either a convex bundle of size k and width m or a non-crossing family of size m.

Proof: First step - preprocessing

Thm: There is a constant C>0 such that, for all positive integers m and k, every set of at least Ckm points in the plane in general position contains either a convex bundle of size k and width m or a non-crossing family of size m.

Proof: First step - preprocessing

Let P be a set of Ckm points where $C = c(7)^{-1}c(5)^{-5}$

Thm: There is a constant C>0 such that, for all positive integers m and k, every set of at least Ckm points in the plane in general position contains either a convex bundle of size k and width m or a non-crossing family of size m.

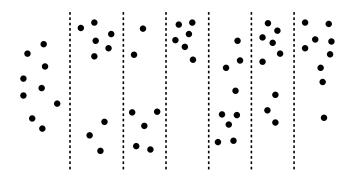
Proof: First step - preprocessing

- Let P be a set of Ckm points where $C = c(7)^{-1}c(5)^{-5}$
- \blacksquare No non-crossing family of size m

Thm: There is a constant C>0 such that, for all positive integers m and k, every set of at least Ckm points in the plane in general position contains either a convex bundle of size k and width m or a non-crossing family of size m.

Proof: First step - preprocessing

- Let P be a set of Ckm points where $C = c(7)^{-1}c(5)^{-5}$
- lacksquare No non-crossing family of size m
- Split P into 7 parts by vertical lines

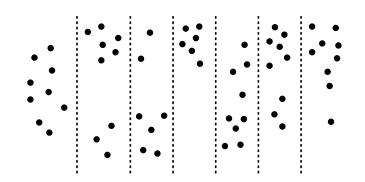


C

Thm: There is a constant C>0 such that, for all positive integers m and k, every set of at least Ckm points in the plane in general position contains either a convex bundle of size k and width m or a non-crossing family of size m.

Proof: First step - preprocessing

- Let P be a set of Ckm points where $C = c(7)^{-1}c(5)^{-5}$
- lacksquare No non-crossing family of size m
- Split P into 7 parts by vertical lines
- Apply same-type lemma



Thm: There is a constant C>0 such that, for all positive integers m and k, every set of at least Ckm points in the plane in general position contains either a convex bundle of size k and width m or a non-crossing family of size m.

Proof: First step - preprocessing

- Let P be a set of Ckm points where $C = c(7)^{-1}c(5)^{-5}$
- \blacksquare No non-crossing family of size m
- Split P into 7 parts by vertical lines
- Apply same-type lemma

g

Thm: There is a constant C>0 such that, for all positive integers m and k, every set of at least Ckm points in the plane in general position contains either a convex bundle of size k and width m or a non-crossing family of size m.

Proof: First step - preprocessing

- Let P be a set of Ckm points where $C = c(7)^{-1}c(5)^{-5}$
- \blacksquare No non-crossing family of size m
- Split P into 7 parts by vertical lines
- Apply same-type lemma
- Carathéodory ⇒ sets form a convex bundle

Thm: There is a constant C>0 such that, for all positive integers m and k, every set of at least Ckm points in the plane in general position contains either a convex bundle of size k and width m or a non-crossing family of size m.

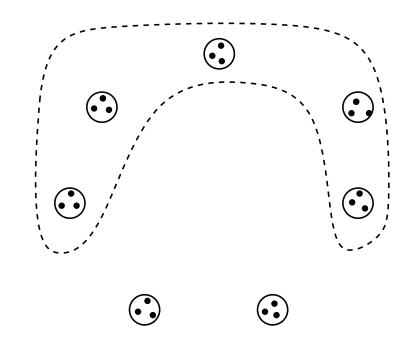
Proof: First step - preprocessing

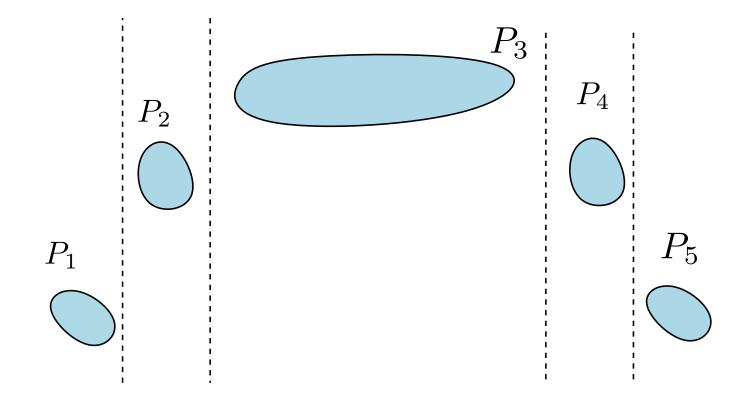
- Let P be a set of Ckm points where $C = c(7)^{-1}c(5)^{-5}$
- \blacksquare No non-crossing family of size m
- Split P into 7 parts by vertical lines
- Apply same-type lemma
- Carathéodory ⇒ sets form a convex bundle

Thm: There is a constant C>0 such that, for all positive integers m and k, every set of at least Ckm points in the plane in general position contains either a convex bundle of size k and width m or a non-crossing family of size m.

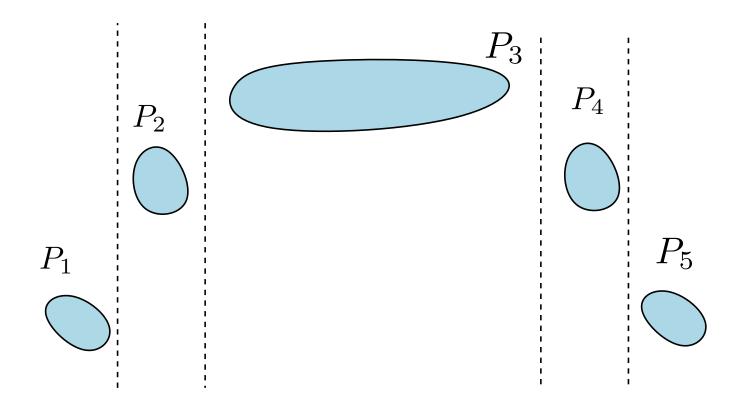
Proof: First step - preprocessing

- Let P be a set of Ckm points where $C = c(7)^{-1}c(5)^{-5}$
- \blacksquare No non-crossing family of size m
- Split P into 7 parts by vertical lines
- Apply same-type lemma
- Carathéodory ⇒ sets form a convex bundle

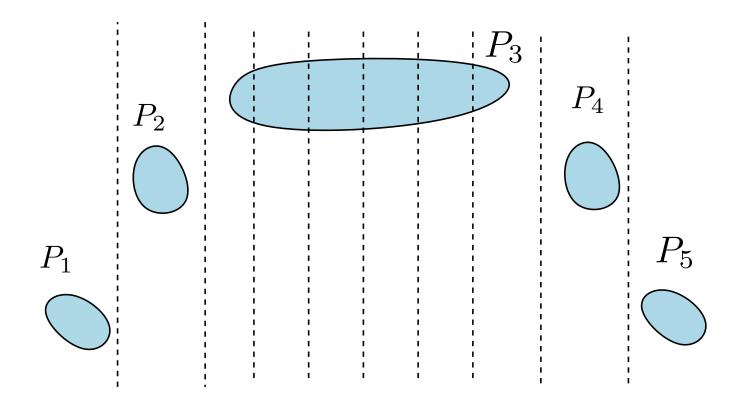




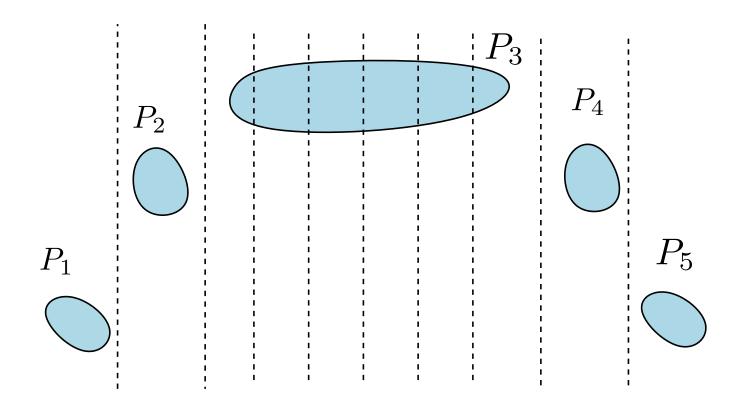
lacksquare Split the "middle" of the cap into k parts



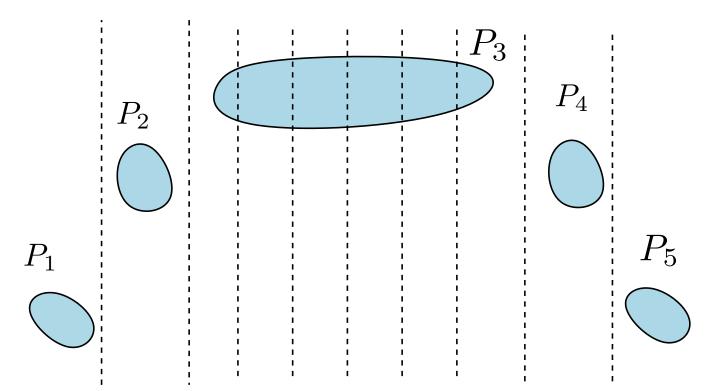
lacksquare Split the "middle" of the cap into k parts



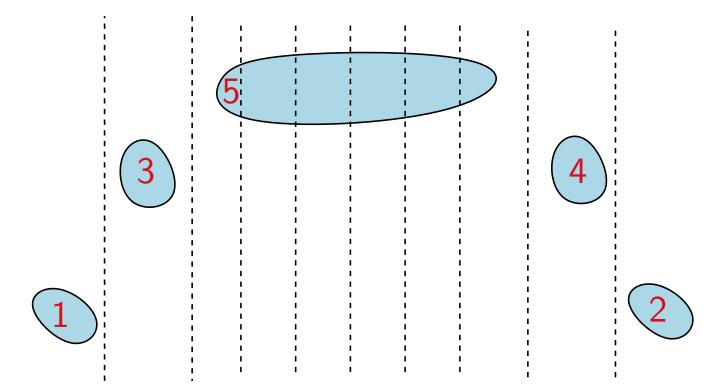
- lacksquare Split the "middle" of the cap into k parts
- Goal = construct a large "cap bundle"



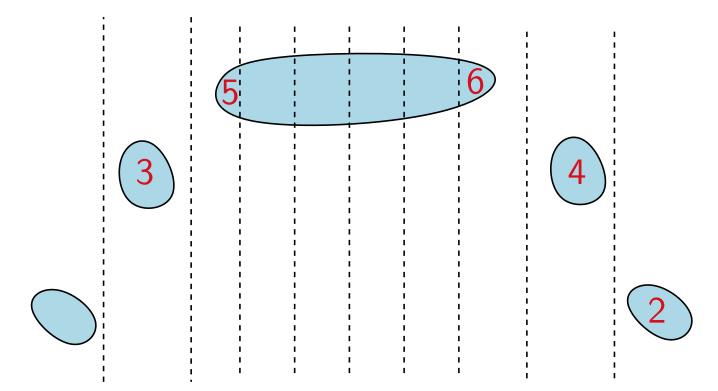
- lacksquare Split the "middle" of the cap into k parts
- Goal = construct a large "cap bundle"
- Apply same-type lemma to 5-tuples!



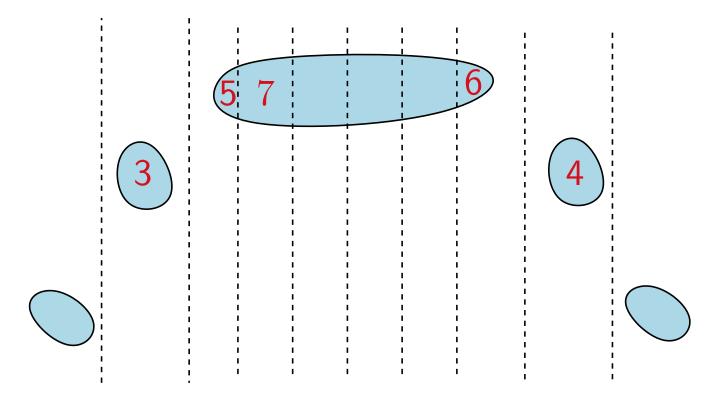
- lacksquare Split the "middle" of the cap into k parts
- Goal = construct a large "cap bundle"
- Apply same-type lemma to 5-tuples!



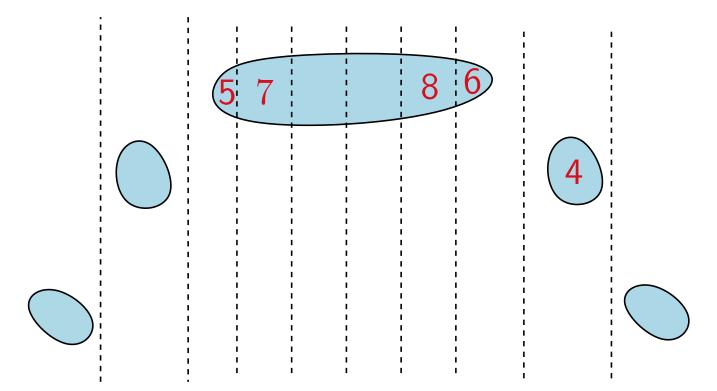
- lacksquare Split the "middle" of the cap into k parts
- Goal = construct a large "cap bundle"
- Apply same-type lemma to 5-tuples!



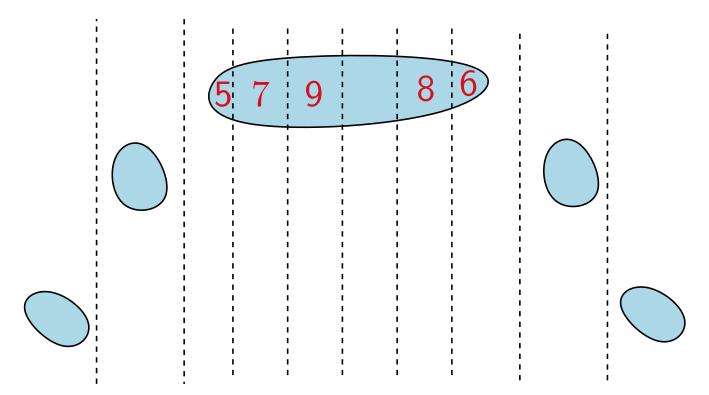
- lacksquare Split the "middle" of the cap into k parts
- Goal = construct a large "cap bundle"
- Apply same-type lemma to 5-tuples!



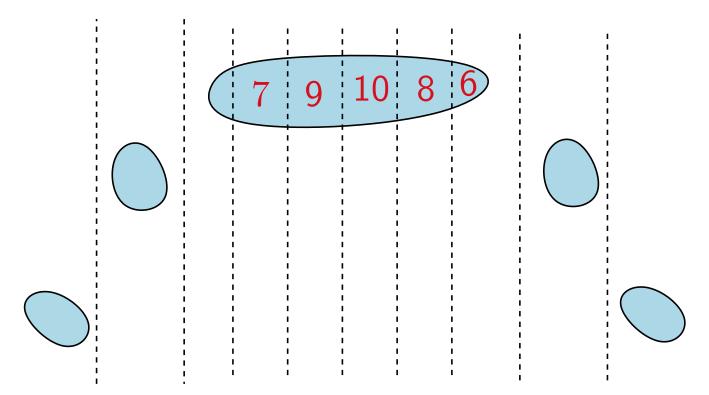
- lacksquare Split the "middle" of the cap into k parts
- Goal = construct a large "cap bundle"
- Apply same-type lemma to 5-tuples!



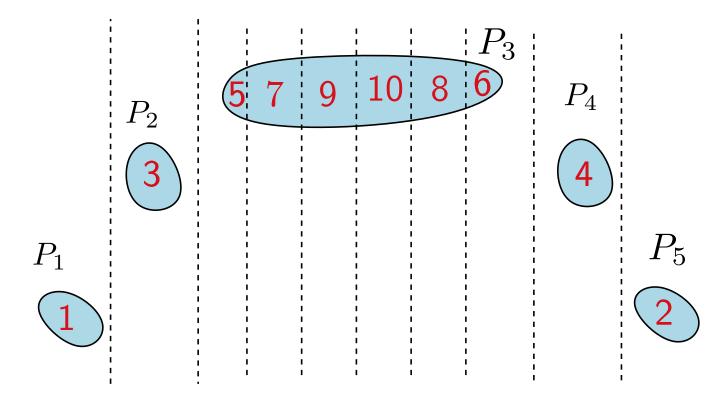
- lacksquare Split the "middle" of the cap into k parts
- Goal = construct a large "cap bundle"
- Apply same-type lemma to 5-tuples!



- lacksquare Split the "middle" of the cap into k parts
- Goal = construct a large "cap bundle"
- Apply same-type lemma to 5-tuples!

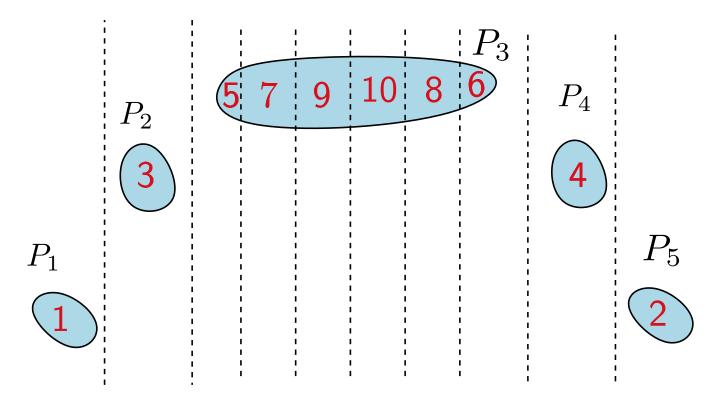


- lacksquare Split the "middle" of the cap into k parts
- \blacksquare Goal = construct a large "cap bundle"
- Apply same-type lemma to 5-tuples!



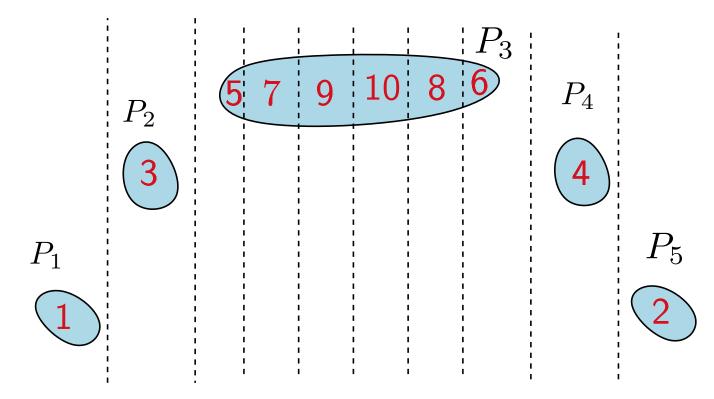
 \blacksquare Each blob in ≤ 5 5-tuples

- lacksquare Split the "middle" of the cap into k parts
- Goal = construct a large "cap bundle"
- Apply same-type lemma to 5-tuples!



- Each blob in ≤ 5 5-tuples
- Recall, |P| = Ckm, $C = c(7)^{-1}c(5)^{-5}$

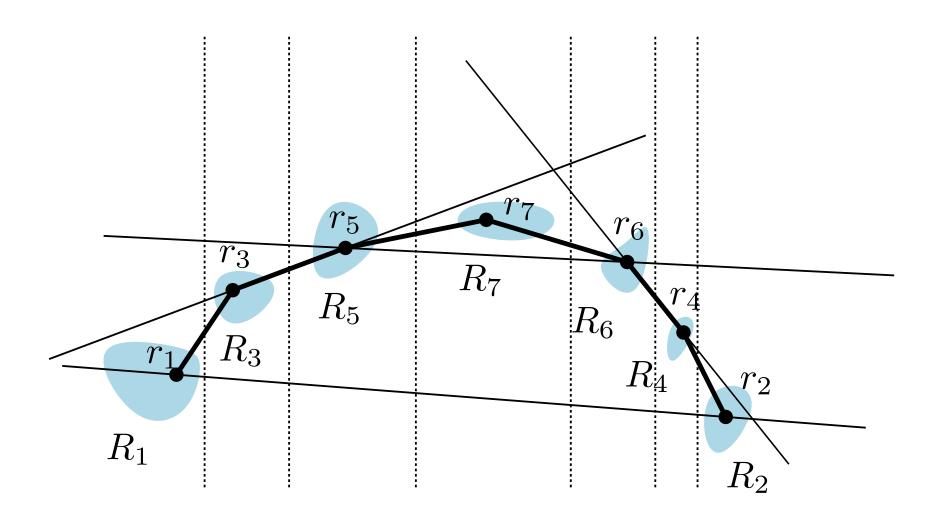
- lacksquare Split the "middle" of the cap into k parts
- Goal = construct a large "cap bundle"
- Apply same-type lemma to 5-tuples!



- \blacksquare Each blob in ≤ 5 5-tuples
- Recall, |P| = Ckm, $C = c(7)^{-1}c(5)^{-5}$
- We obtain sets R_1, R_2, \ldots, R_k of size > m

Final step - sets 5-tuples form a cap

Final step - sets 5-tuples form a cap



Thm: There is a constant C>0 such that for all positive integers k and m, if P is a set of n=Ckm points in the plane in general position, then a convex bundle of size k and width m or a non-crossing family of size m can be computed in expected time O(n).

Thm: There is a constant C>0 such that for all positive integers k and m, if P is a set of n=Ckm points in the plane in general position, then a convex bundle of size k and width m or a non-crossing family of size m can be computed in expected time O(n).

Thm: For a set of n points P in general position, a crossing family of size $n/2^{O(\sqrt{\log m})}$ or a non-crossing family of size m can be computed in expected time $O(nm^{1+O((\log m)^{-1/3})})$.

Thm: There is a constant C>0 such that for all positive integers k and m, if P is a set of n=Ckm points in the plane in general position, then a convex bundle of size k and width m or a non-crossing family of size m can be computed in expected time O(n).

Same type lemma is nondeterministic!

Thm: For a set of n points P in general position, a crossing family of size $n/2^{O(\sqrt{\log m})}$ or a non-crossing family of size m can be computed in expected time $O(nm^{1+O((\log m)^{-1/3})})$.

Thank you for attention!