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Cartesian Product of a Graph with a Path G□Pn

Construction of G□Pn

copies G0, G1, . . . , Gn of G

Path edges Hi linking Gi−1 to Gi for i = 1, . . . , n

Crossing number cr(G) of a graph G
min. # of crossings in any drawing of G

Example K4□P4

K4

Our goal:
cr(G□Pn) for a fixed graph G and general path length n
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Canonical Drawings

vertices on a (|V(G)| × n)-grid

copy edges are vertical (mostly)

path edges are horizontal

crossings are very local and repeating

front, middle, and end copies

a crossings per middle copy

Example K4□P4

where a=2, b=0

G0 G1 G2 G3 G4

H1 H2 H3 H4

“middle” crossings are from
Gi × (Hi ∪ Hi+1)

an − b crossings in a canonical drawing

Our goal: show cr(G□Pn) = an − b
(for fixed G, some a, b ∈ N, and large enough n)
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Upper Bound cr(G□Pn) ≤ an − b

vertices on a (|V(G)| × n)-grid
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Our goal: show cr(G□Pn) = an − b
(for fixed G, some a, b ∈ N, and large enough n)
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Known Results on cr(G□Pn) = an − b (fixed G, some a, b∈N and large enough n)

Values for a and b and upper bound
from optimal canonical drawing (or a known result for some H ⊃ G)

Lower bound
publications often focus on one or two graphs G

many use ad hoc arguments specific to the graph in question

cr(G□Pn) is known for
all G with 4 or 5 vertices (finished 2001) and about half of the G with 6 vertices

Our contribution: general approach for lower bounds
solve a small number of modified crossing number problems on small graphs

successful for 96% of the 6-vertex and 79% of the 7-vertex graphs
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a-Restricted Drawing

a-restricted drawing
each copy of G has fewer than a crossings
on its edges

G0 G1 G2 G3 G4

H1 H2 H3 H4

Suppose cr(G□Pn) < an − b but cr(G□Pn−1) ≥ a(n − 1) − b
consider a crossing-minimal drawing of G□Pn

deleting a Gi implies drawing of G□Pn−1 with ℓ fewer crossings

# of crossings: cr(G□Pn) − ℓ

≥ cr(G□Pn−1) ≥ a(n − 1) − b =⇒ ℓ < a

from now on: only a-restricted drawings
need base case cr(G□Pn−1) = a(n − 1) − b
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Crossing Bands and Forces

Crossing band Bi

crossings that are “centered around Gi”

cra(G□Ps, Bi ∪ · · · ∪ Bj)

min. # of crossings

from Bi, . . . , Bj

in any a-restricted drawing of

G□Ps

Example K−
4 □P4

where s=4

, m=2

G0 G1 G2 G3 G4H1 H2 H3 H4

Forces
“min. # of front/middle/end crossings in any a-restricted drawing of G□Ps”

partition crossing bands by middle index m

front force f<m
s,a := cra(G□Ps, B0 ∪ · · · ∪ Bm−1)

middle force fms,a := cra(G□Ps, Bm)

end force f>m
s,a := cra(G□Ps, Bm+1 ∪ · · · ∪ Bs)
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Forces in Action

Lemma

In an a-restricted drawing of G□Pn there are

(a) at least f<m
s,a crossings from the first m crossings bands;

(b) at least fms,a crossings from the (m + i)-th crossing band for
i ∈ {0, . . . , n − s}; and

(c) at least f>m
s,a crossings from the final s − m crossing bands.

drawing of G□Pn has n − s + 1 subdrawings of G□Ps

no double counting by crossing band definition

Example K−
4 □Pn where n = 9,

s = 3,

a = 2, b = 0
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Main Theorem

forces: B0 · · · Bm−1 Bm Bm+1 · · · Bs︸ ︷︷ ︸
f<m
s,a

︸ ︷︷ ︸
fms,a

︸ ︷︷ ︸
f>m
s,a

Dn: B0 · · · Bm−1 Bm Bm+1 Bm+2 · · · Bm+n−s−1 Bm+n−s Bn−(s−m)+1 · · · Bn︸ ︷︷ ︸
front crossings

(on m crossing bands)

︸ ︷︷ ︸
middle crossings

(on n − s + 1 crossing bands)

︸ ︷︷ ︸
end crossings

(on s − m crossing bands)

Theorem

Let f<m
s,a , fms,a, f>m

s,a be forces of G for a, b, m, s ∈ N. If

cr(G□Ps−1) ≥ a(s − 1) − b

,

fms,a ≥ a

, and

f<m
s,a + f>m

s,a ≥ a(s − 1) − b

,

(base case) (middle) (front/end)

then for all n ≥ s we also have cr(G□Pn) ≥ an − b.
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Applying our Approach

for given G: systematically guess a, b, s, m

(typically s ≤ 4)

calculate base case and forces f<m
s,a ,fms,a,f>m

s,a

(all on G□Ps)

automatic proofs via augmented crossing number ILP [Chimani,Wiedera ’16]

G has f<m
s,a ,fms,a,f>m

s,a

stronger forces

total

5 vertices 19 90%

21 100% 21 100%

21 100%

6 vertices 91 81%

104 93% 105 94%

107 96%

7 vertices 529 62%

573 67% 675 79%

676 79%

Future
are there graphs for which canonical drawings are not optimal?

application to crossing numbers of other graph products
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