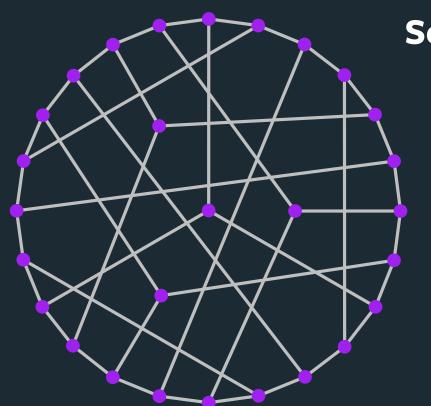
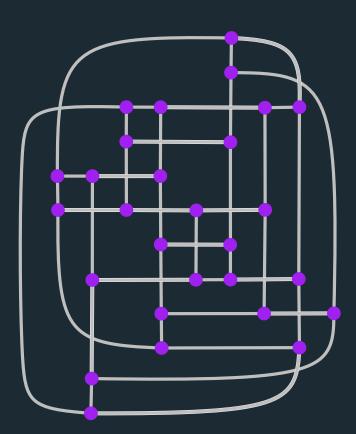
OOPS: Optimized One-Planarity Solver via SAT



Sergey Pupyrev



Can a 3-regular non-1-planar graph be constructed?

Asked 2 years, 6 months ago Modified 8 months ago Viewed 1k times

A 1-planar graph is a graph which has a drawing on the plane such that each edge has at most one crossing.

I used nauty to generate all 3-regular graphs up to order 12, and checked each one of them individually. They all turned out to be 1-planar graphs.

My question is whether it is possible to construct a 3-regular non-1-planar graph.

Can a 3-regular non-1-planar graph be constructed?

Asked 2 years, 6 months ago Modified 8 months ago Viewed 1k times

A 1-planar graph is a graph which has a drawing on the plane such that each edge has at most one crossing.

I used nauty to generate all 3-regular graphs up to order 12, and checked each one of them individually. They all turned out to be 1-planar graphs.

My question is whether it is possible to construct a 3-regular non-1-planar graph.

4 Answers

Highest score (default)

16

For each t, there are 3-regular graphs that are not t-planar. In fact, a random 3-regular n-vertex graph, for large n, has this property. As we'll in the proof, one can take $n = Ct(\log t)^6$ for a suitable absolute constant C.

11011110 About All posts

Cubic 1-planarity

May 11, 2014

Here's a graph drawing problem I don't know how to solve: find the smallest 3-regular graph that is not 1-planar.

The examples I tried with up to 24 vertices are 1-planar. Below are the 20-vertex Desargues graph,

• • •

the 24-vertex McGee graph (7-cage),

• • •

and the 24-vertex Nauru graph:

• • •

On the other hand, for the 28-vertex Coxeter graph and 30-vertex Tutte—Coxeter graph (8-cage) I have been unable to find a 1-planar drawing. So my guess is that the answer is somewhere in this range.

Question:

Which of the named WIKIPEDIA graphs are 1-planar?

Q Search Wikipedia

List of graphs by edges and vertices

Article Talk

List [edit]

name	vertices	edges	radius	diam.
26-fullerene graph (26-fullerene)	26	39	5	6
120-cell	600	1200	15	15
Balaban 3-10-cage	70	105	6	6
Balaban 3-11-cage	112	168	6	8
Barnette–Bosák–Lederberg graph	38	57	5	9
Bidiakis cube	12	18	3	3
Biggs-Smith graph	102	153	7	7
Blanuša snarks	18	27	4	4

Stats:

- non-planar only
- $10 \le |V| \le 54$
- $15 \le |E| \le 90$
- **47** instances

Optimized One-Planarity Solver - Sergey Pupyrev

Agenda

- √ 1. Motivation
- \rightarrow 2. 8 attempts to build a solver

3. Some results

4. Open problems

Attempt o / 8: Check Existing Work

Computational Geometry

Volume 108, January 2023, 101900

1-planarity testing and embedding: An experimental study ☆, ☆☆

Carla Binucci ☒, Walter Didimo ☒, Fabrizio Montecchiani 🌣 ☒

Show more V

+ Add to Mendeley 🗬 Share 🗦 Cite

https://doi.org/10.1016/j.comgeo.2022.101900 7

Get rights and content 7

no implementation available 😥

Attempt o / 8: Check Existing Work

Computational Geometry

Volume 108, January 2023, 101900

1-planarity testing and embedding: An experimental study ☆, ☆☆

Carla Binucci 🖾 , Walter Didimo 🖾 , Fabrizio Montecchiani 🙎 🖾 Show more V + Add to Mendeley 🗬 Share 🗦 Cite https://doi.org/10.1016/j.comgeo.2022.101900 7 Get rights and content 7

no implementation available 😥

- 1-planar
- o non-1-planar
- 47 unknown

Attempt 1 / 8: Brute-Force

Algorithm:

- 1. Identify pairs of potential crossing edges $O(m^2)$
- 2. Enumerate possible crossing pairs $O(2^{m^2})$
- 3. Check every combination for planarity $O(n \cdot 2^{m^2})$

Attempt 1 / 8: Brute-Force

Algorithm:

- 1. Identify pairs of potential crossing edges $O(m^2)$
- 2. Enumerate possible crossing pairs $O(2^{m^2})$
- 3. Check every combination for planarity $O(n \cdot 2^{m^2})$

- 11 1-planar +11
- o non-1-planar
- 36 unknown

Attempt 2 / 8: Lower Bounds

Lemma 1: [folklore]

A graphs is 1-planar iff every biconnected component is 1-planar.

Lemma 2: [Bodendiek, Schumacher, Wagner @ 1984]

Every 1-planar graph contains at most 4n - 8 edges.

Lemma 3: [Karpov @ 2014]

Every **bipartite** 1-planar graph contains at most 3n - 8 edges.

Lemmas 4...:

Every IC / NIC / girth-4 / ...) 1-planar graph contains at most ... edges.

Attempt 2 / 8: Lower Bounds

Lemma 1: [folklore]

A graphs is 1-planar iff every biconnected component is 1-planar.

Lemma 2: [Bodendiek, Schumacher, Wagner @ 1984]

Every 1-planar graph contains at most 4n - 8 edges.

Lemma 3: [Karpov @ 2014]

Every **bipartite** 1-planar graph contains at most 3n - 8 edges.

Lemmas 4...:

Every IC / NIC / girth-4 / ...) 1-planar graph contains at most ... edges.

- 12 1-planar+1
- o non-1-planar
- 35 unknown

Attempt 3 / 8: Naive SAT Encoding

Variables
Clauses

Solve
glucose
kissat
...

Result
YES/NO

Attempt 3 / 8: Naive SAT Encoding

Encode

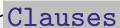
Variables Clauses

solve glucose kissat

Result YES/NO

Variables

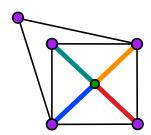
a pair of edges cross \rightarrow 4 edges an edge is uncrossed \rightarrow 1 edge



encoding planarity via

[Chimani & Zeranski @ 2014]

[Kirchweger, Scheucher, Szeider @ 2023],



Attempt 3 / 8: Naive SAT Encoding

Encode

Variables Clauses

Solve glucose kissat

Result YES/NO

Variables

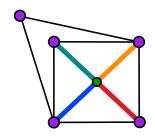
a pair of edges cross \rightarrow 4 edges an edge is uncrossed \rightarrow 1 edge

Clauses

encoding planarity via

[Chimani & Zeranski @ 2014]

[Kirchweger, Scheucher, Szeider @ 2023],



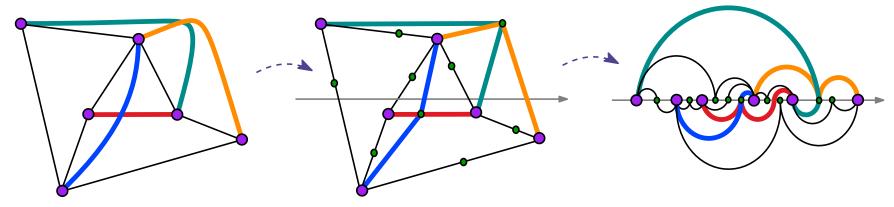
- **12** 1-planar
- o non-1-planar
- 35 unknown

Attempt 4 / 8: Hanani-Tutte Encoding

inspired by:

[Chimani & Zeranski @ 2014]

└-[Fulek, Pelsmajer, Schaefer, Štefankovič @ 2013]

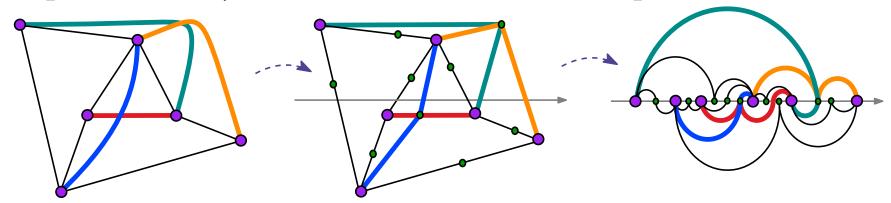


Attempt 4 / 8: Hanani-Tutte Encoding

inspired by:

[Chimani & Zeranski @ 2014]

→[Fulek, Pelsmajer, Schaefer, Štefankovič @ 2013]



Variables

- linear order of vertices
- pairs of crossing edges
- move variables: an edge is routed above/below a vertex

Clauses

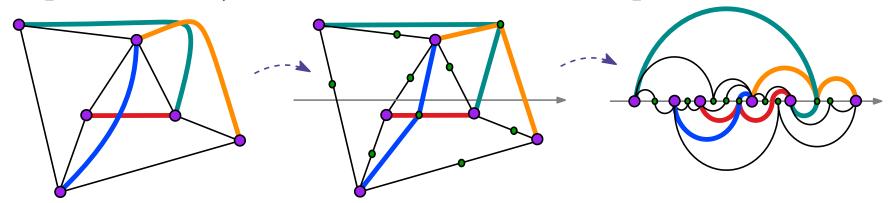
- sync the order & crossings & move
- move "planarity" constraints

Attempt 4 / 8: Hanani-Tutte Encoding

inspired by:

[Chimani & Zeranski @ 2014]

-[Fulek, Pelsmajer, Schaefer, Štefankovič @ 2013]



Variables

- linear order of vertices
- pairs of crossing edges
- move variables: an edge is routed above/below a vertex

Clauses

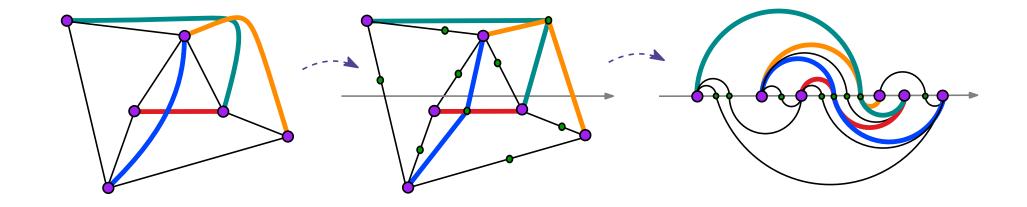
- sync the order & crossings & move
- move "planarity" constraints

- 26 1-planar
- +14
- o non-1-planar
- 21 unknown

Attempt 5 / 8: Book Embedding Encoding

inspired by:

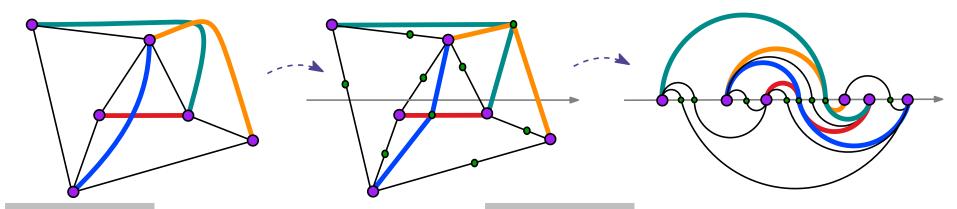
[Felsner, Fusy, Noy, Orden @ 2011]



Attempt 5 / 8: Book Embedding Encoding

inspired by:

[Felsner, Fusy, Noy, Orden @ 2011]



Variables

- linear order of vertices
- pairs of crossing edges
- edge above/below the spine

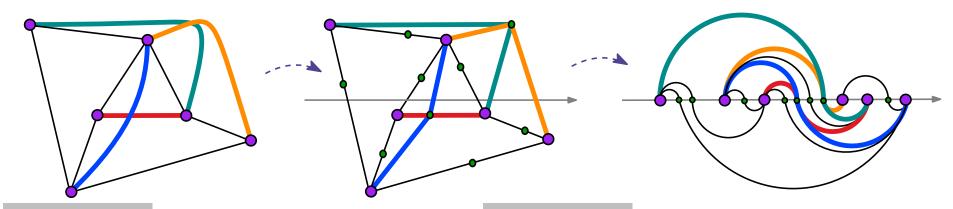
Clauses

- sync the order & crossings
- planarity constraints

Attempt 5 / 8: Book Embedding Encoding

inspired by:

[Felsner, Fusy, Noy, Orden @ 2011]



Variables

- linear order of vertices
- pairs of crossing edges
- edge above/below the spine

Clauses

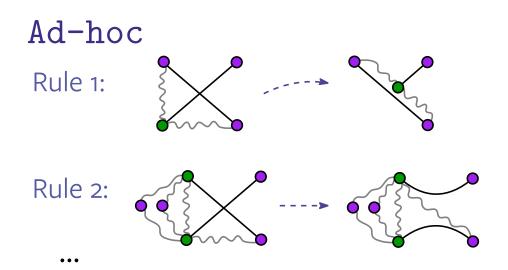
- sync the order & crossings
- planarity constraints

- 29 1-planar +3
- 1 non-1-planar +1
- 17 unknown

Ad-hoc

Variables

- linear order of vertices
- m²
- pairs of crossing edges
- edge above/below the spine m



Variables

linear order of vertices

 n^2

pairs of crossing edges

m²

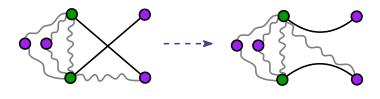
edge above/below the spine

m

Ad-hoc

Rule 1:

Rule 2:



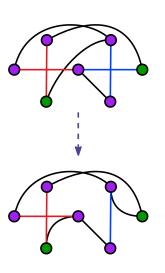
Variables

- linear order of vertices
 - pairs of crossing edges
- edge above/below the spine

 m^2

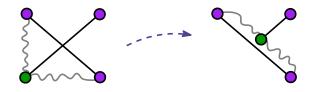
m

- 1. Enumerate all triples of crossing pairs
- 2. Check if "rerouting" eliminates a crossing
- 3. If yes, introduce a 3-clause

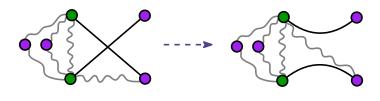


Ad-hoc

Rule 1:



Rule 2:



Variables

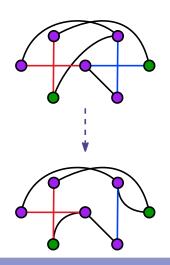
- linear order of vertices
- pairs of crossing edges
- edge above/below the spine

<u>___2</u>

m

Automatic

- 1. Enumerate all triples of crossing pairs
- 2. Check if "rerouting" eliminates a crossing
- 3. If yes, introduce a 3-clause



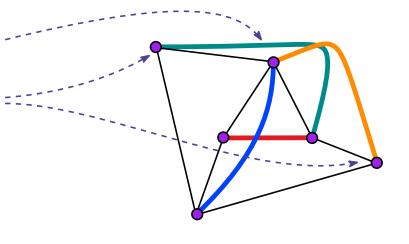
- 29 1-planar
- 4 non-1-planar +3
- 14 unknown

Attempt 7 / 8: Break Symmetries

Ad-hoc

- first vertex in the order
- relative order of twins

• • •



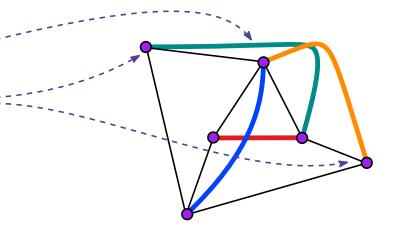
- https://github.com/meelgroup/breakid [Devriendt and Bogaerts @ 2025]
- https://github.com/markusa4/satsuma [Anders, Brenner, Rattan @ 2024]

Attempt 7 / 8: Break Symmetries

Ad-hoc

- first vertex in the order
- relative order of twins

•••



Automatic

- https://github.com/meelgroup/breakid [Devriendt and Bogaerts @ 2025]
- https://github.com/markusa4/satsuma [Anders, Brenner, Rattan @ 2024]

- 29 1-planar
- 5 non-1-planar +1
- 13 unknown

Attempt 8 / 8: Brute-Scale

parallel SAT Solvers:

- GIMSATUL
- GLUCOSE-24/48
- PARKISSAT
- PRS
- PAINLESS
- MALLOB
- LINGELING
- ...

Attempt 8 / 8: Brute-Scale

parallel SAT Solvers:

- **GIMSATUL**
- GLUCOSE-24/48
- **PARKISSAT**
- PRS
- **PAINLESS**
- **MALLOB**
- LINGELING

- 29 1-planar15 non-1-planar +10
- unknown

Agenda

- √ 1. Motivation
- √ 2. 8 attempts to build a solver

 \rightarrow 3. Some results

4. Open problems

Results (practical)

OOPS is open sourced at https://github.com/spupyrev/oops

```
most small instances (n \le 30, m \le 50): (milli-)seconds
```

many medium instances ($n \le 60, m \le 75$): minutes

some *large* instances ($n \le 90, m \le 100$): hours

1-planar instances recognized **much** faster than non-1-planar: minutes vs days

Results (practical)

OOPS is open sourced at https://github.com/spupyrev/oops

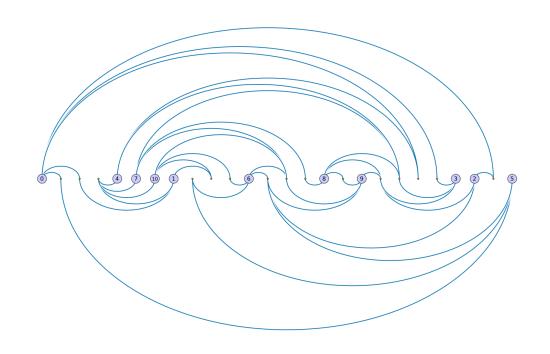
```
most small instances (n \le 30, m \le 50): (milli-)seconds
```

many medium instances ($n \le 60, m \le 75$): minutes

some *large* instances ($n \le 90, m \le 100$): hours

1-planar instances recognized **much** faster than non-1-planar: minutes vs days

- misc extensions:
 - ./oops -ic
 - ./oops -nic
 - ./oops -directed
 - ./oops -output=svg



Results (theoretical)

Theorem 1 (computationally verified)

Every graph with $n \le 6$ or $m \le 17$ is 1-planar.

Every **bipartite** graph with $n \le 8$ or $m \le 18$ is 1-planar.

Theorem 2

There exist non-1-planar graphs with m=n+10.

(m=n+3) is the tight planar bound

Results (theoretical)

Theorem 1 (computationally verified)

Every graph with $n \le 6$ or $m \le 17$ is 1-planar.

Every **bipartite** graph with $n \le 8$ or $m \le 18$ is 1-planar.

Theorem 2

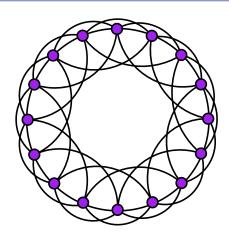
There exist non-1-planar graphs with m=n+10.

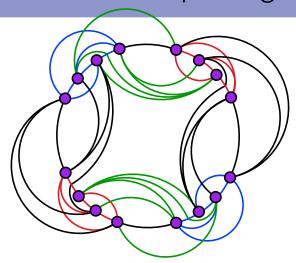
(m=n+3) is the tight planar bound

Theorem 3

answers a question in [Zhang, Ouyang, Huang'25]

There exist infinitely many 6-connected claw-free 1-planar graphs.





Problem 1

Find the smallest cubic non-1-planar graph

Problem 1

Find the smallest cubic non-1-planar graph

Conjecture: Tutte-Coxeter with n = 30, along with 4 other instances (verified for all $n \le 24$ and all bipartite $n \le 30$)

Problem 1

Find the smallest cubic non-1-planar graph

Conjecture: Tutte-Coxeter with n=30, along with 4 other instances (verified for all $n \le 24$ and all bipartite $n \le 30$)

Problem 2

Design a **formal proof** of such a result (and other results in GD) [in Lean?]

Problem 1

Find the smallest cubic non-1-planar graph

Conjecture: Tutte-Coxeter with n=30, along with 4 other instances (verified for all $n \le 24$ and all bipartite $n \le 30$)

Problem 2

Design a **formal proof** of such a result (and other results in GD) [in Lean?]

Problem 3

Is it NP-hard to recognize **cubic** 1-planar graphs?

Problem 4

Design SAT solvers for 2-planar, fan-planar, **straight-line** 1-planar, ... graphs

Problem 1

Find the smallest cubic non-1-planar graph

Conjecture: Tutte-Coxeter with n=30, along with 4 other instances (verified for all $n \le 24$ and all bipartite $n \le 30$)

Problem 2

Design a **formal proof** of such a result (and other results in GD) [in Lean?]

Problem 3

Is it NP-hard to recognize **cubic** 1-planar graphs?

Problem 4

Design SAT solvers for 2-planar, fan-planar, **straight-line** 1-planar, ... graphs

