Characterizing and Recognizing Twistedness

Oswin Aichholzer Graz

Birgit Vogtenhuber TU

Characterizing and Recognizing Twistedness

An abstract rotation system of K_n with $n \geq 7$ is generalized twisted \Leftrightarrow every subrotation system induced by 5 vertices is.

A realizable rotation system of K_n with $n \geq 3$ is generalized twisted \Leftrightarrow there exist two vertices v_1 and v_2 and a bipartition $A \cup B$ of the remaining vertices (A or B can be empty) s.t.:

- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A, b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.

Realizable rotation system of K_n : $O(n^2)$ -time algorithm to decide if generalized twisted Abstract rotation system of K_n : $O(n^5)$ -time algorithm to decide if generalized twisted

Characterizing and Recognizing Twistedness

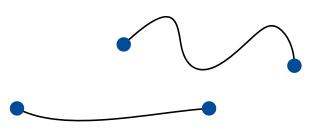
- Introduction and definitions (simple drawings, generalized twisted drawings, rotation systems)
- Characterizing and recognizing generalized twisted drawings
 (Combinatorial characterization via small subdrawings and via a 'special' vertex pair leading to fast recognition algorithms)
- Most important parts of the algorithm

Simple drawings (simple topological graphs, good drawings) are drawings of graphs on the plane, where:

Vertices are disjoint points, edges are Jordan arcs.

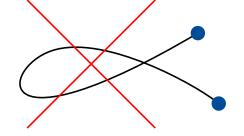
Simple drawings (simple topological graphs, good drawings) are drawings of graphs on the plane, where:

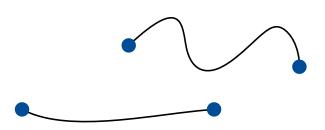
Vertices are disjoint points, edges are Jordan arcs.



Simple drawings (simple topological graphs, good drawings) are drawings of graphs on the plane, where:

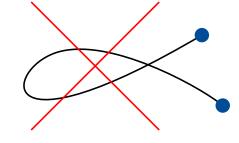
• Vertices are disjoint points, edges are Jordan arcs.



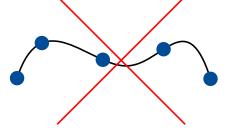


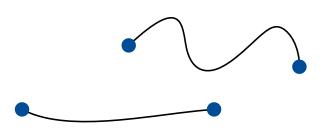
Simple drawings (simple topological graphs, good drawings) are drawings of graphs on the plane, where:

• Vertices are disjoint points, edges are Jordan arcs.



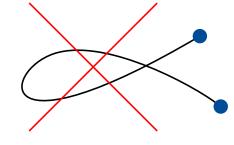
• Edges don't pass through other vertices.



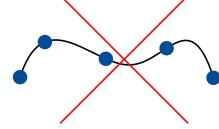


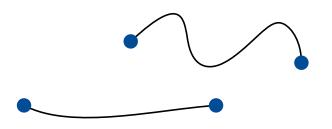
Simple drawings (simple topological graphs, good drawings) are drawings of graphs on the plane, where:

• Vertices are disjoint points, edges are Jordan arcs.



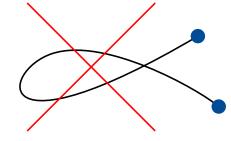
• Edges don't pass through other vertices.



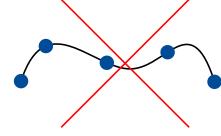


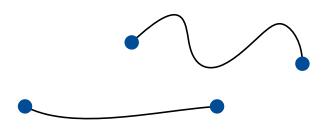
Simple drawings (simple topological graphs, good drawings) are drawings of graphs on the plane, where:

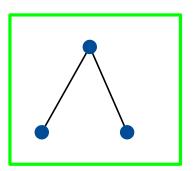
• Vertices are disjoint points, edges are Jordan arcs.



• Edges don't pass through other vertices.

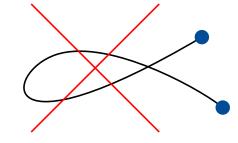




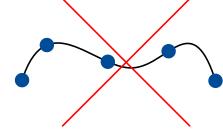


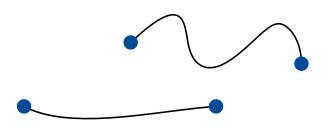
Simple drawings (simple topological graphs, good drawings) are drawings of graphs on the plane, where:

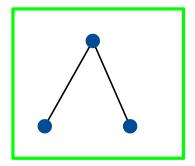
• Vertices are disjoint points, edges are Jordan arcs.

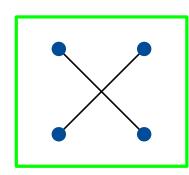


• Edges don't pass through other vertices.



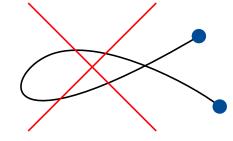




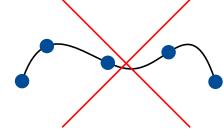


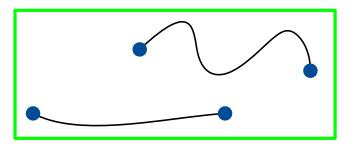
Simple drawings (simple topological graphs, good drawings) are drawings of graphs on the plane, where:

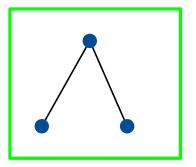
• Vertices are disjoint points, edges are Jordan arcs.

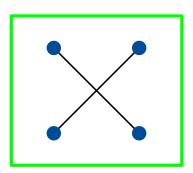


• Edges don't pass through other vertices.



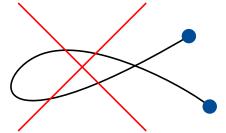




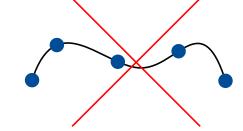


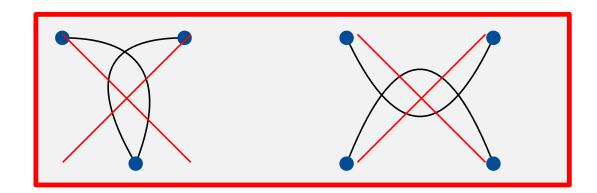
Simple drawings (simple topological graphs, good drawings) are drawings of graphs on the plane, where:

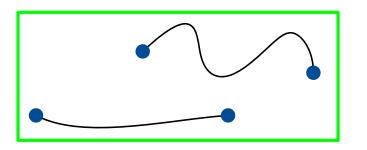
• Vertices are disjoint points, edges are Jordan arcs.

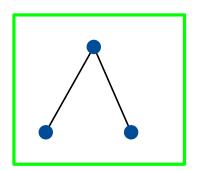


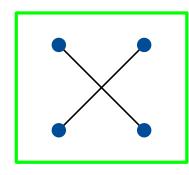
• Edges don't pass through other vertices.





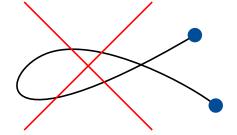




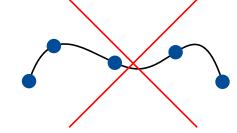


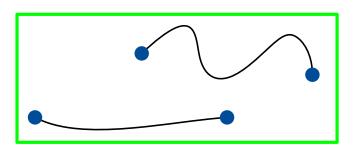
Simple drawings (simple topological graphs, good drawings) are drawings of graphs on the plane, where:

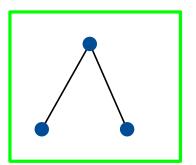
• Vertices are disjoint points, edges are Jordan arcs.

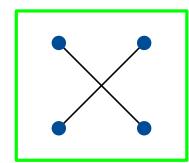


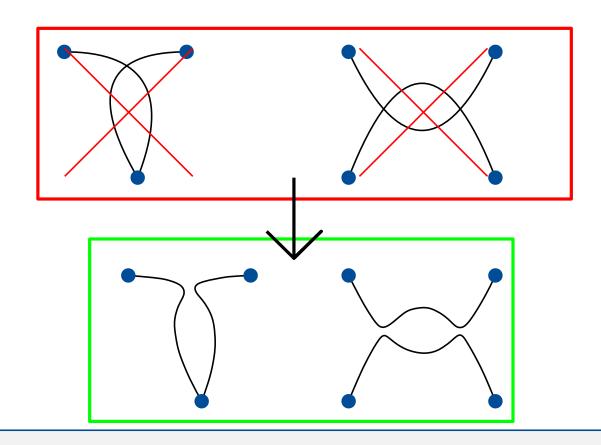
• Edges don't pass through other vertices.







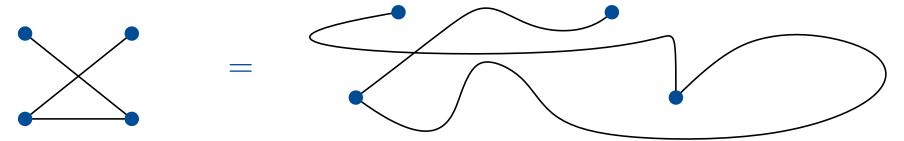


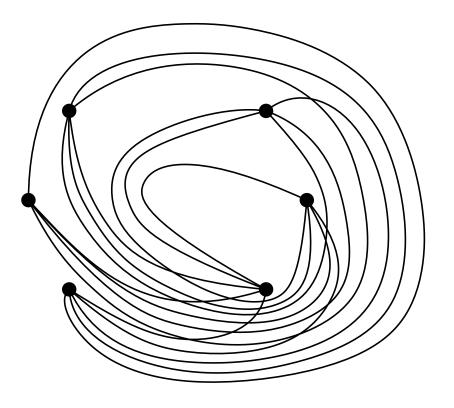


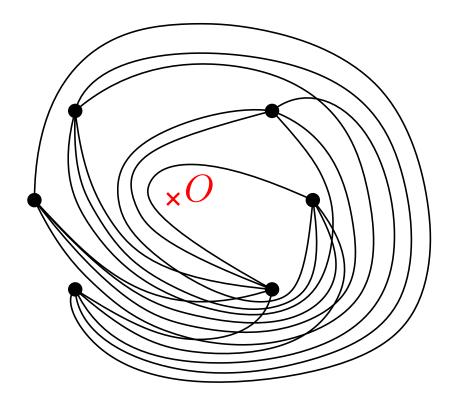
Simple drawings (simple topological graphs, good drawings) are drawings of graphs on the plane, where:

- Vertices are disjoint points, edges are Jordan arcs.
- Edges don't pass through other vertices.
- Any pair of edges intersect at most once:
 No adjacent edges cross, no multiple crossings!

Strongly isomorphic drawings (\exists homeomorphism of the plane transforming one into the other) are considered the same.

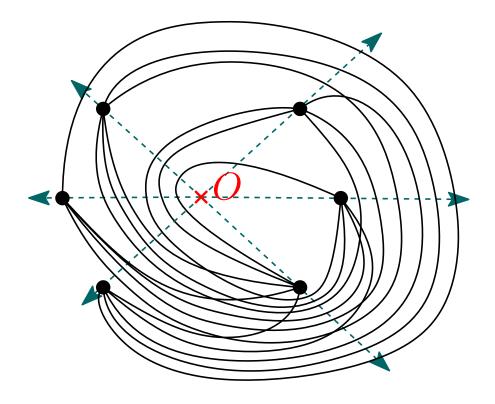




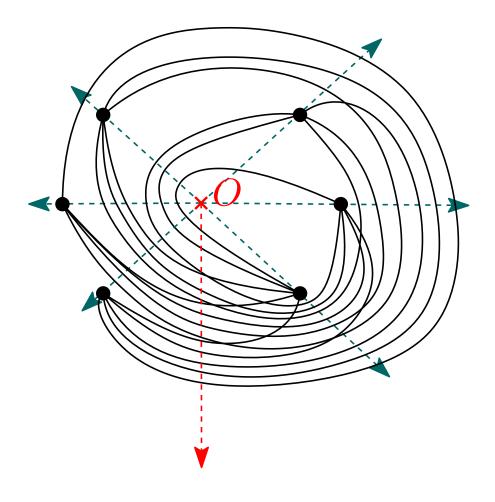


Simple drawing D of K_n is generalized twisted if \exists a point O s.t.

ullet Any ray emanating from O intersects any edge of D at most once.

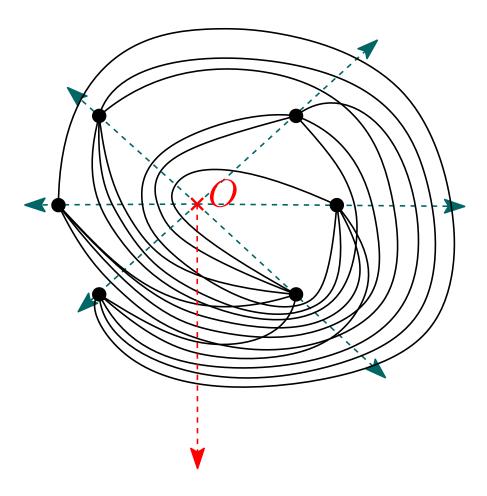


- ullet Any ray emanating from O intersects any edge of D at most once.
- ullet a ray emanating from O that intersects every edge of D.



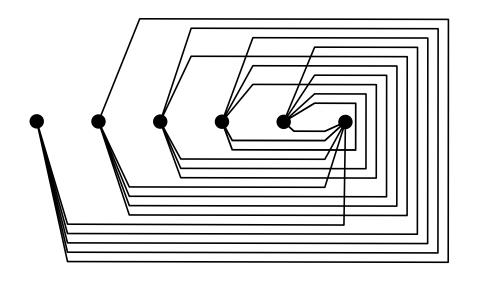
it is strongly isomorphic to a simple drawing in which;

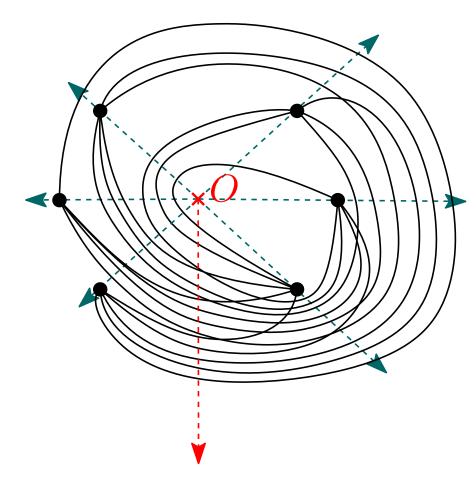
- ullet Any ray emanating from O intersects any edge of D at most once.
- ullet \exists a ray emanating from O that intersects every edge of D.



it is strongly isomorphic to a simple drawing in which;

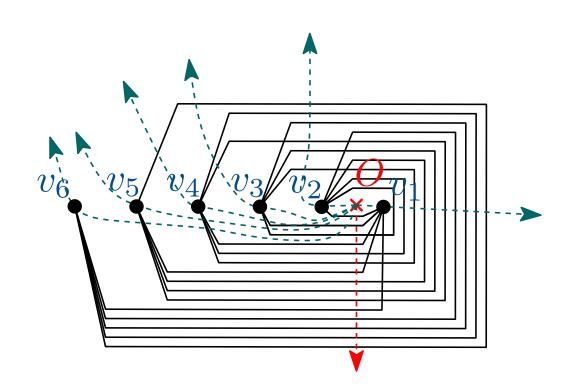
- ullet Any ray emanating from O intersects any edge of D at most once.
- ullet a ray emanating from O that intersects every edge of D.

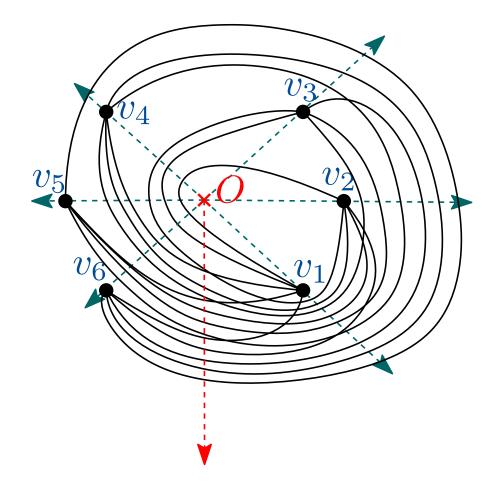




it is strongly isomorphic to a simple drawing in which;

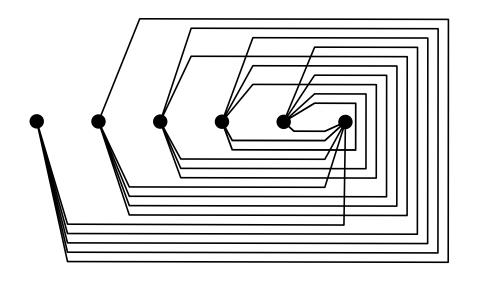
- ullet Any ray emanating from O intersects any edge of D at most once.
- ullet \exists a ray emanating from O that intersects every edge of D.

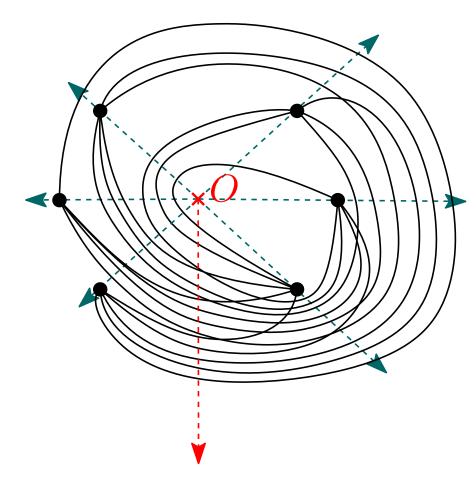




it is strongly isomorphic to a simple drawing in which;

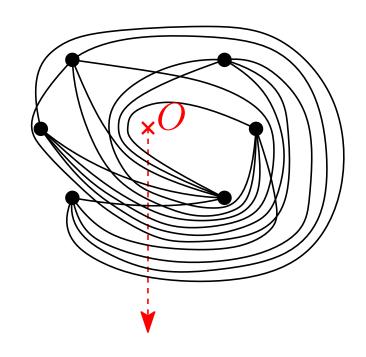
- ullet Any ray emanating from O intersects any edge of D at most once.
- ullet a ray emanating from O that intersects every edge of D.

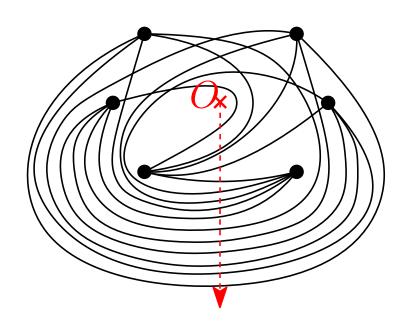


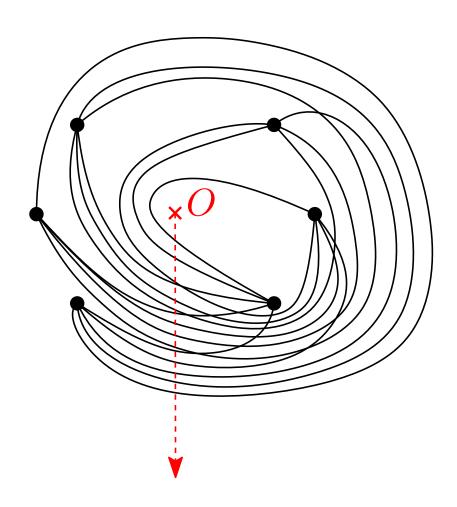


it is strongly isomorphic to a simple drawing in which;

- ullet Any ray emanating from O intersects any edge of D at most once.
- ullet \exists a ray emanating from O that intersects every edge of D.



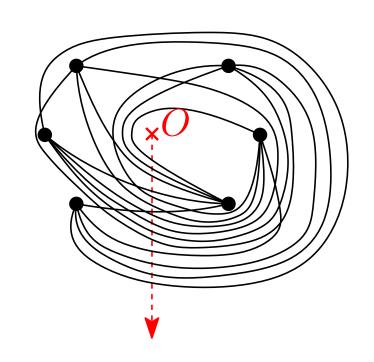


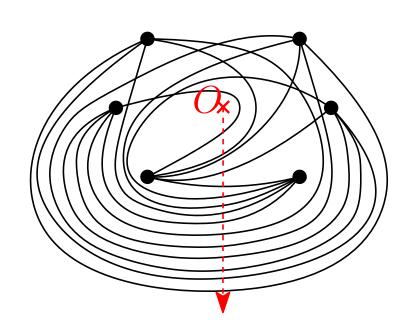


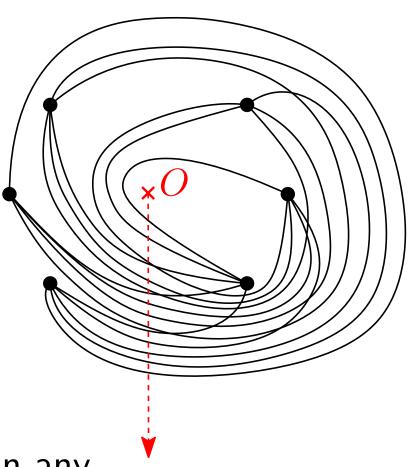
it is strongly isomorphic to a simple drawing in which;

Simple drawing D of K_n is generalized twisted if \exists a point O s.t.

- ullet Any ray emanating from O intersects any edge of D at most once.
- ullet a ray emanating from O that intersects every edge of D.

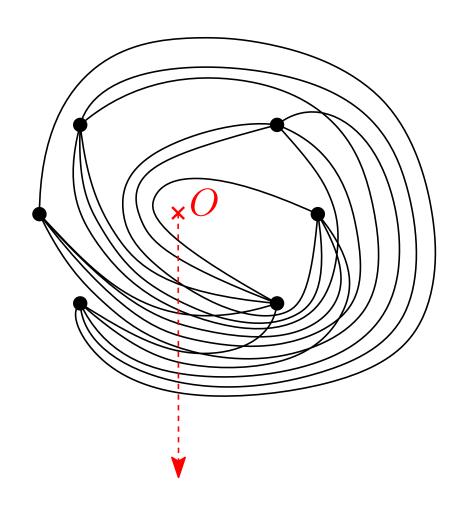




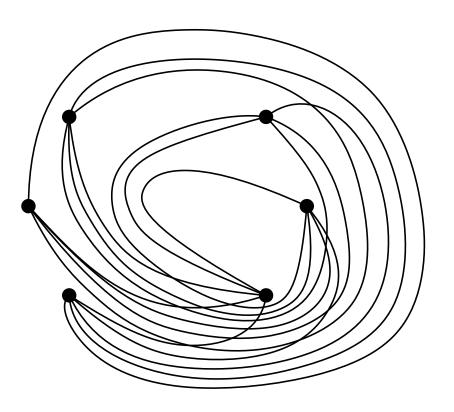


Currently best bounds on size of largest plane matching, cycle and path in any simple drawing of K_n obtained with generalized twisted drawings. [Aichholzer, García, Tejel, Vogtenhuber, W. 2022]

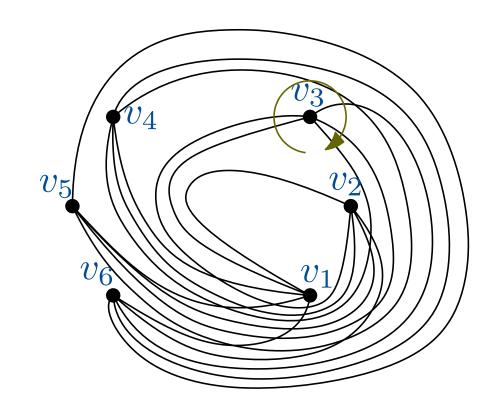
Largest class of drawings where each has exactly 2n-4 empty triangles. [García, Tejel, Vogtenhuber, W. 2022]



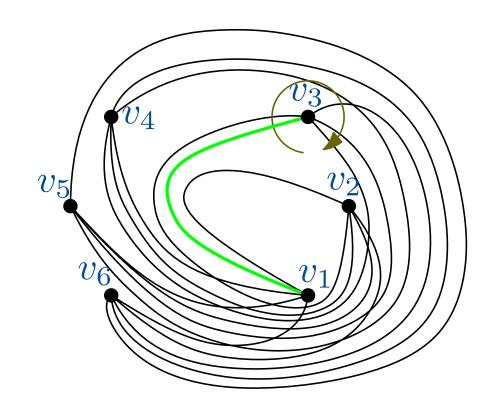
Rotation of vertex in drawing: Cyclical order of its incident edges



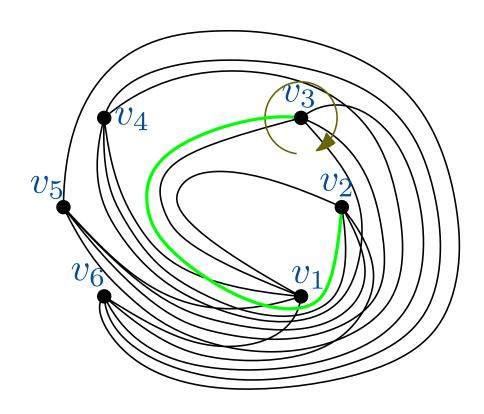
Rotation of vertex in drawing: Cyclical order of its incident edges



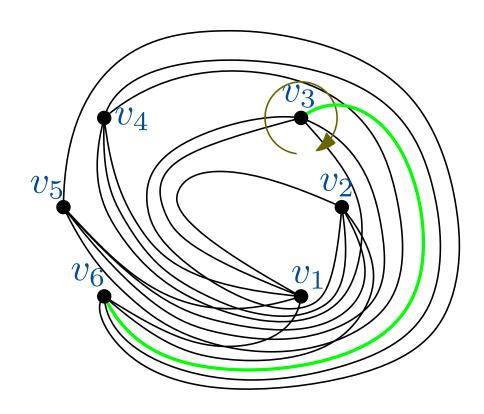
Rotation of vertex in drawing: Cyclical order of its incident edges



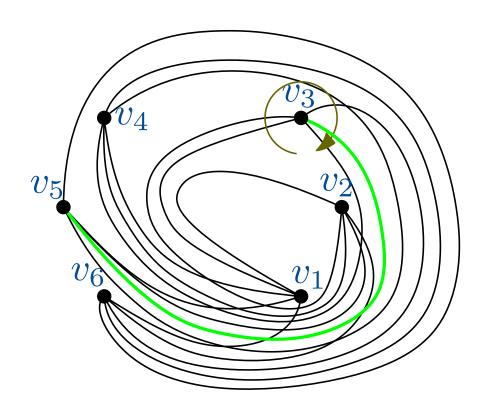
Rotation of vertex in drawing: Cyclical order of its incident edges



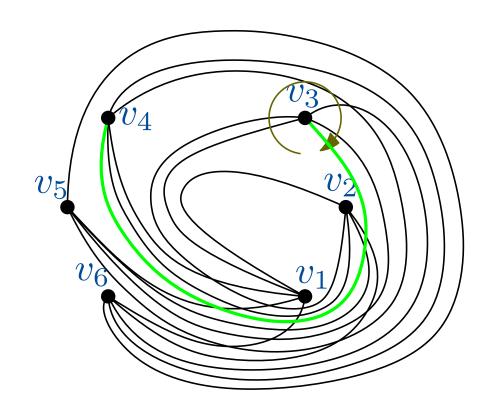
Rotation of vertex in drawing: Cyclical order of its incident edges



Rotation of vertex in drawing: Cyclical order of its incident edges



Rotation of vertex in drawing: Cyclical order of its incident edges



Rotation of vertex in drawing: Cyclical order of its incident edges

```
v_3: v_1, v_2, v_6, v_5, v_4
```

Rotation system of a drawing: Collection of rotations of all vertices

```
v_1: v_2, v_6, v_5, v_4, v_3

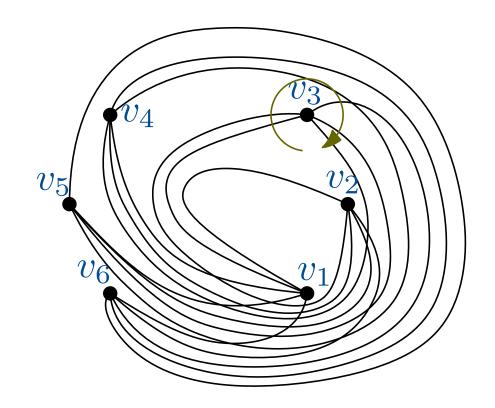
v_2: v_1, v_6, v_5, v_4, v_3

v_3: v_1, v_2, v_6, v_5, v_4

v_4: v_1, v_2, v_3, v_6, v_5

v_5: v_1, v_2, v_3, v_4, v_6

v_6: v_1, v_2, v_3, v_4, v_5
```

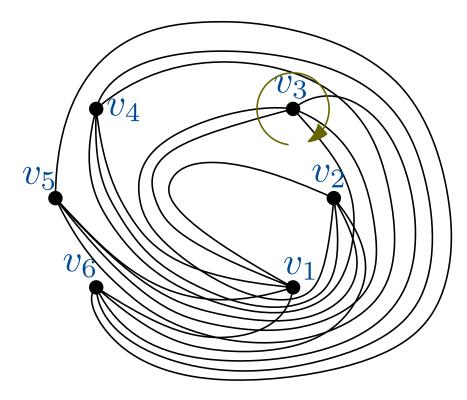


Rotation of vertex in drawing: Cyclical order of its incident edges

```
v_3: v_1, v_2, v_6, v_5, v_4
```

Rotation system of a drawing: Collection of rotations of all vertices

```
V1: V2, V6, V5, V4, V3
V2: V1, V6, V5, V4, V3
V3: V1, V2, V6, V5, V4
V4: V1, V2, V3, V6, V5
V5: V1, V2, V3, V4, V6
V6: V1, V2, V3, V4, V5
```



Simple drawings of K_n have same rotation system \Leftrightarrow same crossings [Gioan 2005/2022, Kynčl 2013]

Rotation of vertex in drawing: Cyclical order of its incident edges

```
v_3: v_1, v_2, v_6, v_5, v_4
```

Rotation system of a drawing: Collection of rotations of all vertices

```
      v_1:
      v_2,
      v_6,
      v_5,
      v_4,
      v_3

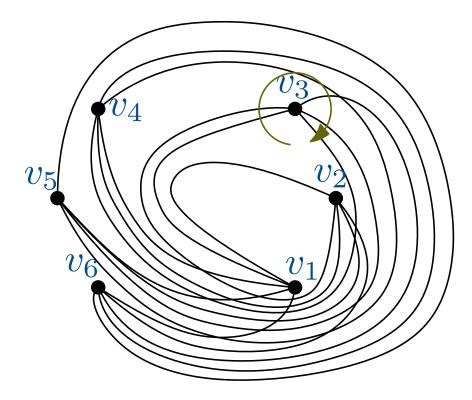
      v_2:
      v_1,
      v_6,
      v_5,
      v_4,
      v_3

      v_3:
      v_1,
      v_2,
      v_6,
      v_5,
      v_4,

      v_4:
      v_1,
      v_2,
      v_3,
      v_4,
      v_6

      v_5:
      v_1,
      v_2,
      v_3,
      v_4,
      v_6

      v_6:
      v_1,
      v_2,
      v_3,
      v_4,
      v_6
```



Simple drawings of K_n have same rotation system \Leftrightarrow same crossings [Gioan 2005/2022, Kynčl 2013]

Several drawing families have been characterized via their rotation system

Rotation of vertex in drawing: Cyclical order of its incident edges

Rotation system of a drawing: Collection of rotations of all vertices

Rotation System

Rotation of vertex in drawing: Cyclical order of its incident edges

Rotation system of a drawing: Collection of rotations of all vertices

Abstract rotation system of a graph: Gives every vertex a cyclic order of its incident edges

Rotation System

Rotation of vertex in drawing: Cyclical order of its incident edges

Rotation system of a drawing: Collection of rotations of all vertices

Abstract rotation system of a graph: Gives every vertex a cyclic order of its incident edges

Abstract rotation system is realizable iff \exists a simple drawing with that rotation system Abstract rotation system of K_n is realizable \Leftrightarrow every subrotation induced by 5 vertices is [Kynčl 2020]

Rotation System

Rotation of vertex in drawing: Cyclical order of its incident edges

Rotation system of a drawing: Collection of rotations of all vertices

Abstract rotation system of a graph: Gives every vertex a cyclic order of its incident edges

Abstract rotation system is realizable iff \exists a simple drawing with that rotation system Abstract rotation system of K_n is realizable \Leftrightarrow every subrotation induced by 5 vertices is [Kynčl 2020]

Abstract rotation system is generalized twisted iff ∃ a generalized twisted drawing with that rotation system

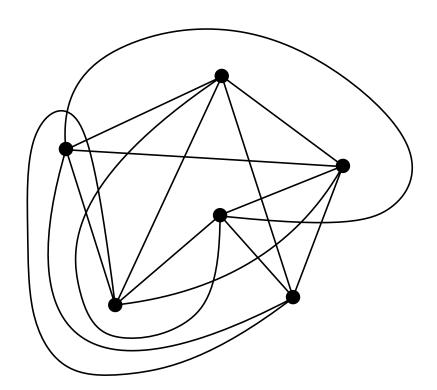
Characterizing Twistedness Using 5-Tuples

An abstract rotation system of K_n with $n \geq 7$ is generalized twisted \Leftrightarrow every subrotation system induced by 5 vertices is.

Characterizing Twistedness Using 5-Tuples

An abstract rotation system of K_n with $n \geq 7$ is generalized twisted \Leftrightarrow every subrotation system induced by 5 vertices is.

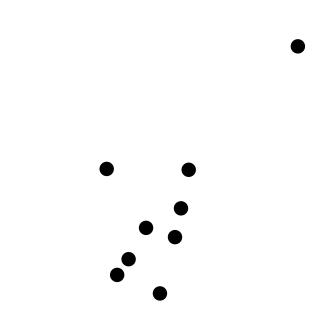
For n=6 this is not the case.



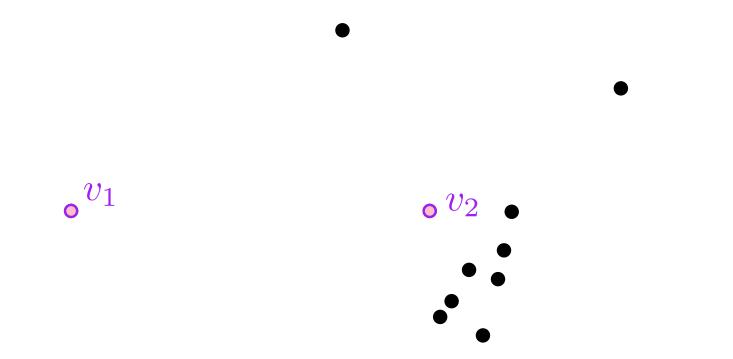
- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A, b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.

- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A$, $b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.

- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A$, $b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.

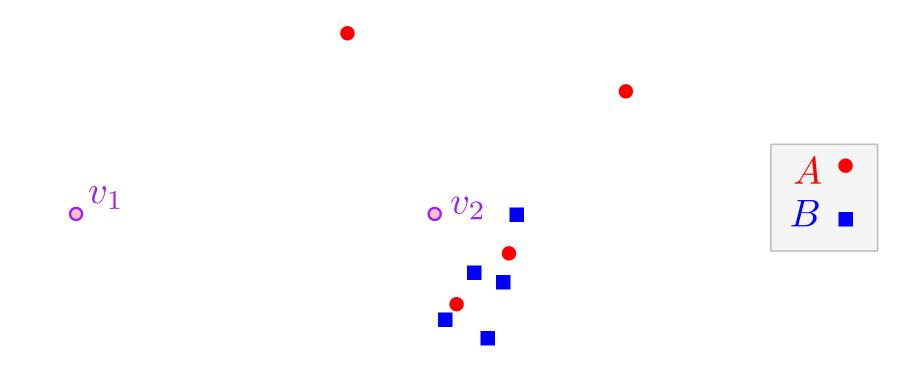


- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A$, $b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.

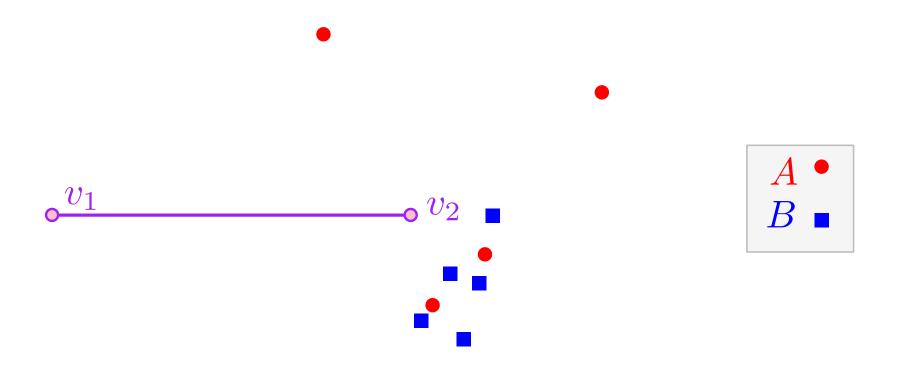


A realizable rotation system of K_n with $n \geq 3$ is generalized twisted

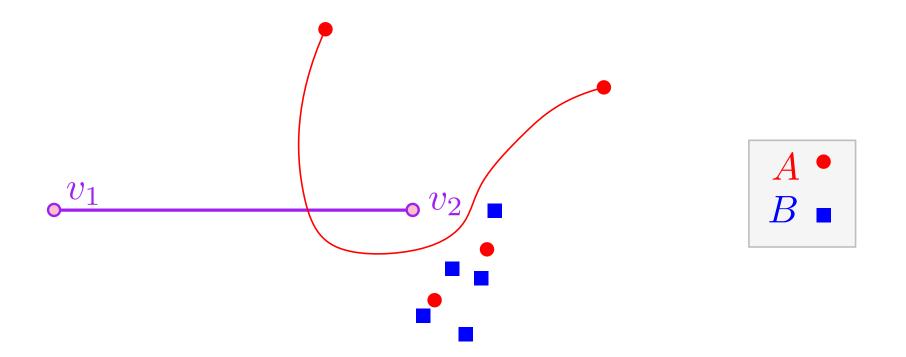
- \Leftrightarrow there exist two vertices v_1 and v_2 and a bipartition $A \cup B$ of the remaining vertices (A or B can be empty) such that:
 - $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
 - $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
 - $\forall a \in A$, $b \in B$, the edge ab does not cross v_1v_2 .
 - Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
 - Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.



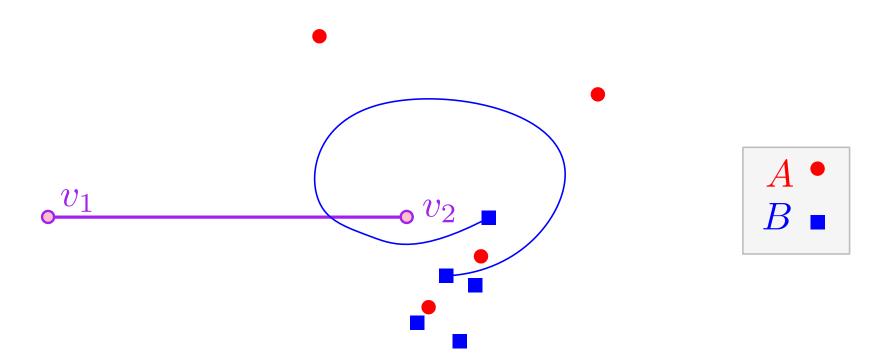
- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A$, $b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.



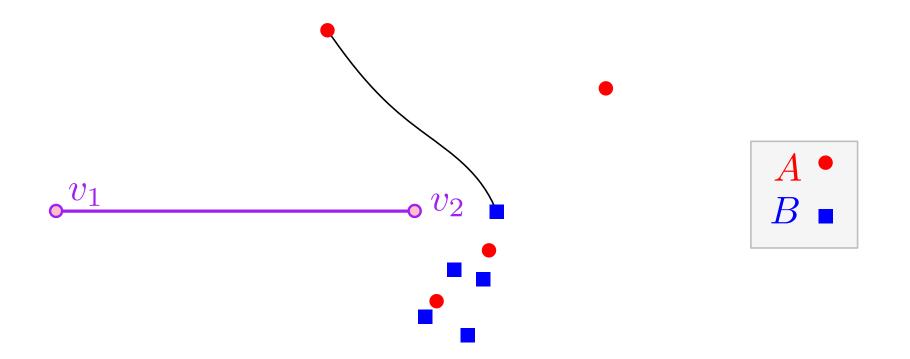
- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A$, $b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.



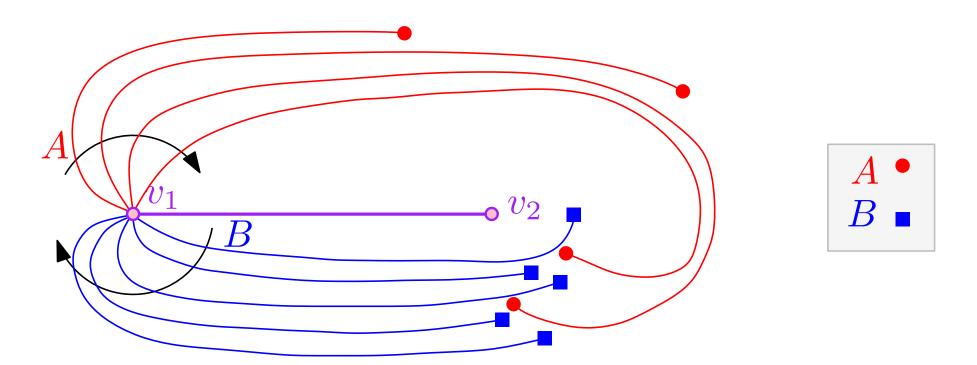
- \bullet $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A$, $b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.



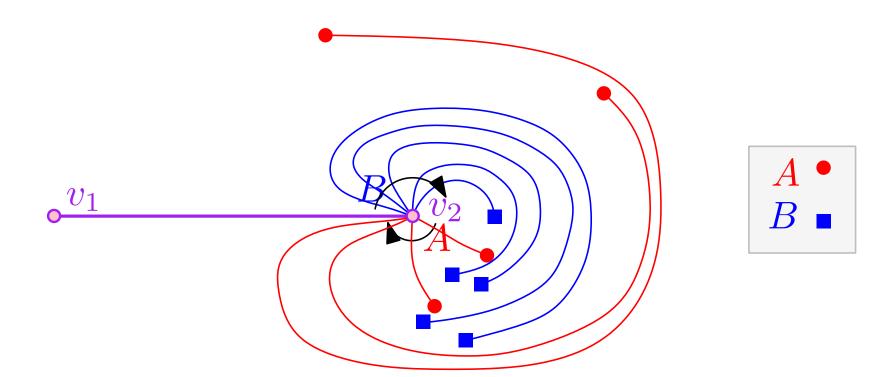
- \bullet $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A, b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.



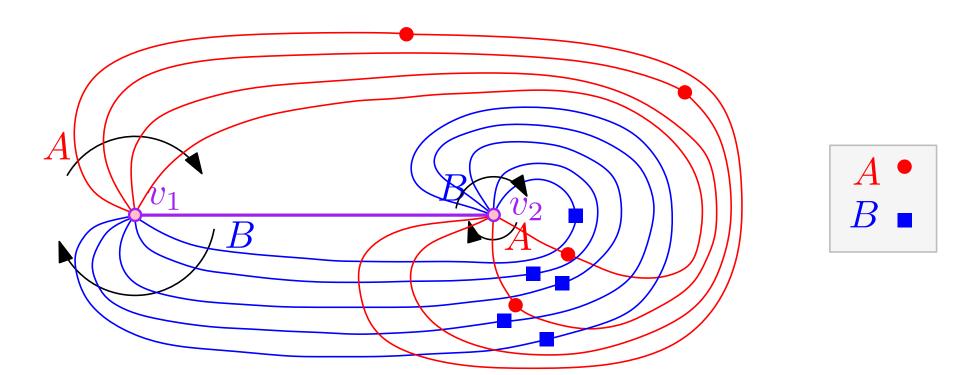
- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A, b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.



- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A, b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.



- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A$, $b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.



Recognizing Twistedness: Algorithmic Results

Realizable rotation system of K_n : $O(n^2)$ -time algorithm to decide if generalized twisted

Recognizing Twistedness: Algorithmic Results

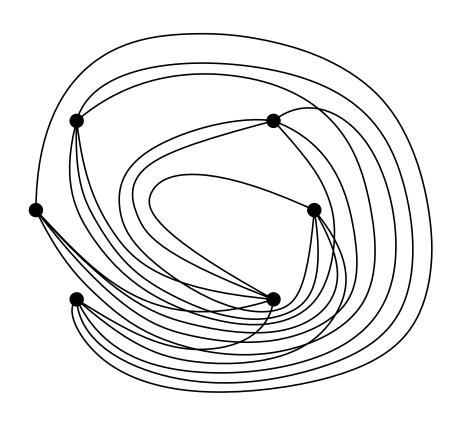
Realizable rotation system of K_n : $O(n^2)$ -time algorithm to decide if generalized twisted

Abstract rotation system of K_n : $O(n^5)$ -time algorithm to decide if generalized twisted

Realizable rotation system of K_n : $O(n^2)$ -time algorithm to decide if generalized twisted

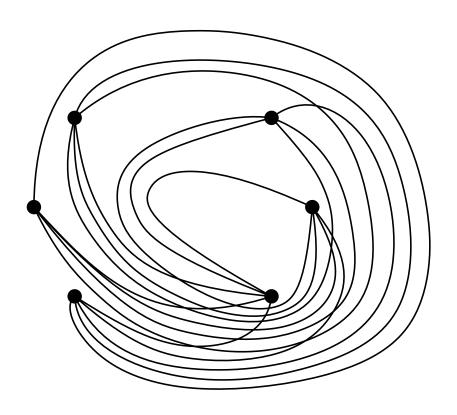
Abstract rotation system of K_n : $O(n^5)$ -time algorithm to decide if generalized twisted

If rotation system realizable:



If rotation system realizable:

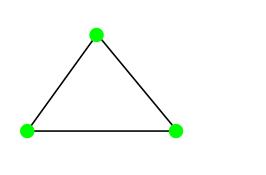
Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

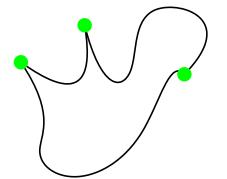


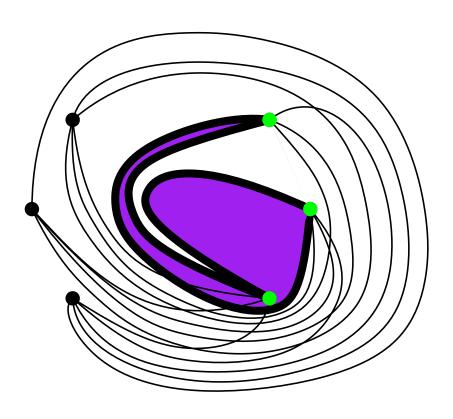
If rotation system realizable:

Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

A triangle



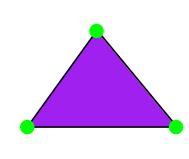


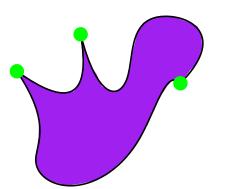


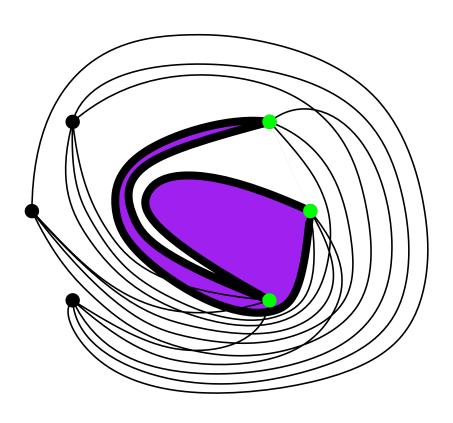
If rotation system realizable:

Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

A triangle



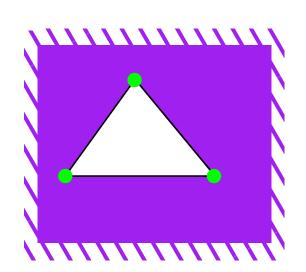


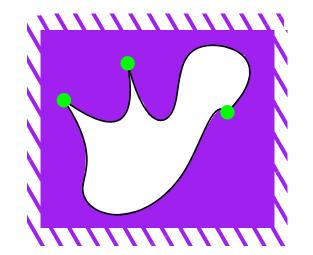


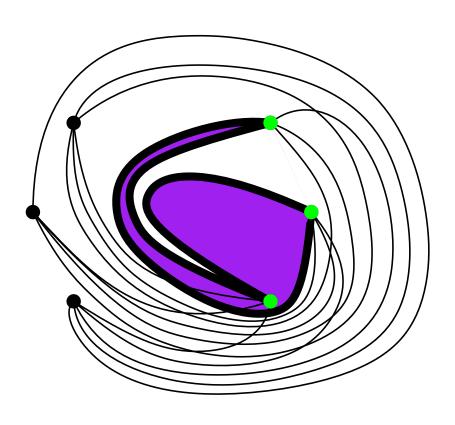
If rotation system realizable:

Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

A triangle



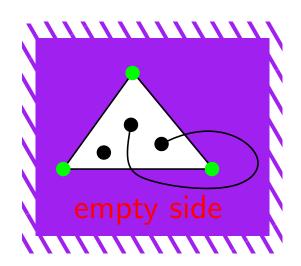


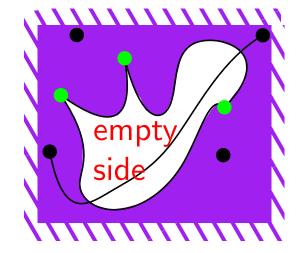


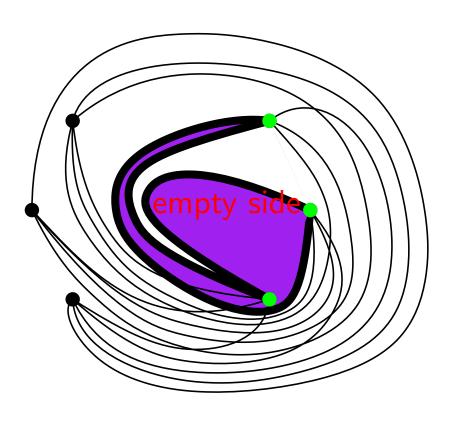
If rotation system realizable:

Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

A triangle is empty if at least one side of the triangle contains no vertices.



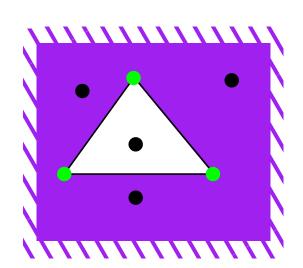


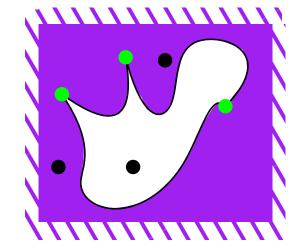


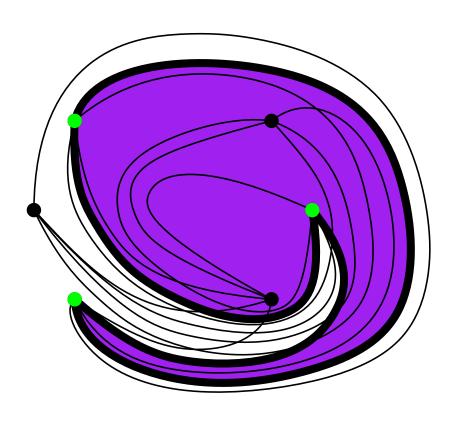
If rotation system realizable:

Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

A triangle is empty if at least one side of the triangle contains no vertices.





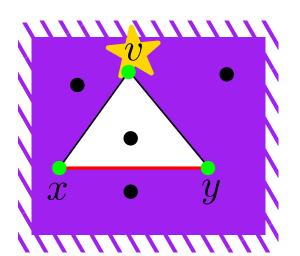


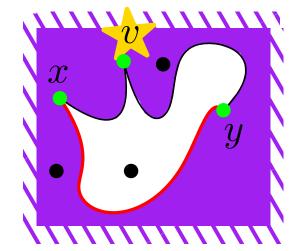
If rotation system realizable:

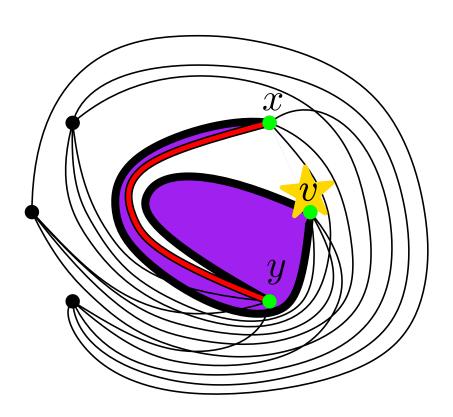
Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

A triangle is empty if at least one side of the triangle contains no vertices.

A triangle with vertices v, x, y is a star triangle at v if xy is not crossed by any edges incident to v.





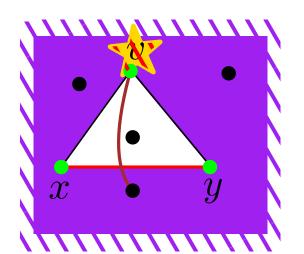


If rotation system realizable:

Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

A triangle is empty if at least one side of the triangle contains no vertices.

A triangle with vertices v, x, y is a star triangle at v if xy is not crossed by any edges incident to v.





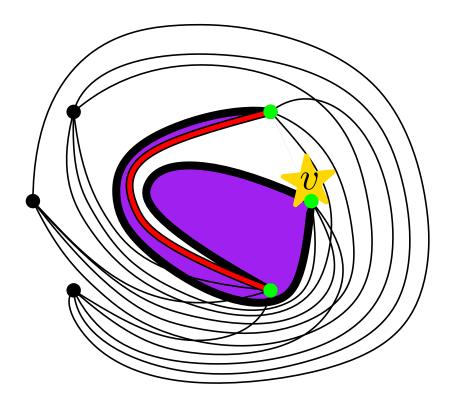


If rotation system realizable:

Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

A triangle is empty if at least one side of the triangle contains no vertices.

A triangle with vertices v, x, y is a star triangle at v if xy is not crossed by any edges incident to v.

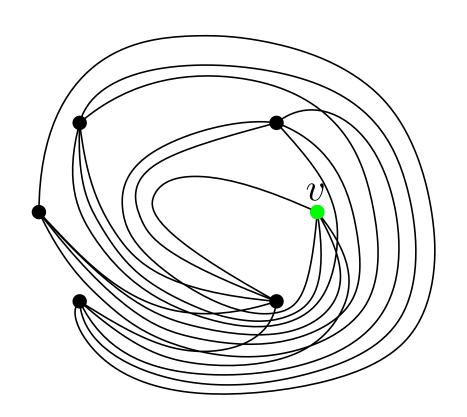


If rotation system realizable:

Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

Step 2:

ullet If there were **not** exactly 2 empty star triangles at v: not generalized twisted [García, Tejel, Vogtenhuber, W. 2022]

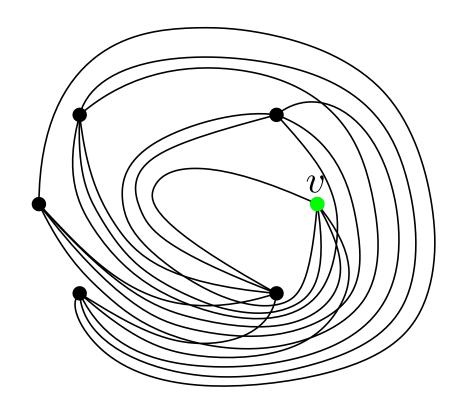


If rotation system realizable:

Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

Step 2:

- If there were **not** exactly 2 empty star triangles at v: not generalized twisted
- If there were exactly 2 empty star triangles at v: For all pairs among the ≤ 5 involved vertices: Check if it can be v_1, v_2 . $O(n^2)$



If rotation system realizable:

Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

Step 2:

- If there were **not** exactly 2 empty star triangles at v: not generalized twisted
- If there were exactly 2 empty star triangles at v: For all pairs among the ≤ 5 involved vertices: Check if it can be v_1, v_2 . $O(n^2)$

two vertices v_1 and v_2 and a bipartition $A \cup B$ of the remaining vertices (A or B can be empty) such that:

- $\forall a$, a' in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A, b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.

If rotation system realizable:

Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

Step 2:

- If there were **not** exactly 2 empty star triangles at v: not generalized twisted
- If there were exactly 2 empty star triangles at v: For all pairs among the ≤ 5 involved vertices: Check if it can be v_1, v_2 . $O(n^2)$

two vertices v_1 and v_2 and a bipartition $A \cup B$ of the remaining vertices (A or B can be empty) such that:

- $\forall a$, a' in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A, b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.

If rotation system realizable:

Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

Step 2:

- If there were **not** exactly 2 empty star triangles at v: not generalized twisted
- If there were exactly 2 empty star triangles at v: For all pairs among the ≤ 5 involved vertices: Check if it can be v_1, v_2 . $O(n^2)$

two vertices v_1 and v_2 and a bipartition $A \cup B$ of the remaining vertices (A or B can be empty) such that:

- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A, b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.

If rotation system realizable:

Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

Step 2:

- If there were **not** exactly 2 empty star triangles at v: not generalized twisted
- If there were exactly 2 empty star triangles at v:

For all pairs among the ≤ 5 involved vertices:

Check if it can be v_1, v_2 . $O(n^2)$

If yes: generalized twisted

If no: not generalized twisted

two vertices v_1 and v_2 and a bipartition $A \cup B$ of the remaining vertices (A or B can be empty) such that:

- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A, b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.

Algorithm

If rotation system realizable:

Step 1: For arbitrary vertex v compute all empty star triangles at vertex v. $O(n^2)$

Step 2:

- If there were **not** exactly 2 empty star triangles at v: not generalized twisted
- If there were exactly 2 empty star triangles at v:

For all pairs among the ≤ 5 involved vertices:

Check if it can be v_1, v_2 . $O(n^2)$

If yes: generalized twisted

If no: not generalized twisted

Algorithm

Realizable rotation system of K_n : $O(n^2)$ -time algorithm to decide if generalized twisted Abstract rotation system of K_n : $O(n^5)$ -time algorithm to decide if generalized twisted

If rotation system realizable:

Step 1: For arbitrary vertex v compute all empty triangles involving v. $O(n^2)$

Step 2:

- If there were **not** exactly 2 empty star triangles at v: not generalized twisted
- If there were exactly 2 empty star triangles at v:

For all pairs among the ≤ 5 involved vertices: Check if it can be v_1, v_2 . $O(n^2)$

If yes: generalized twisted

If no: not generalized twisted

Conclusion

An abstract rotation system of K_n with $n \geq 7$ is generalized twisted \Leftrightarrow every subrotation system induced by 5 vertices is.

A realizable rotation system of K_n with $n \geq 3$ is generalized twisted \Leftrightarrow there exist two vertices v_1 and v_2 and a bipartition $A \cup B$ of the remaining vertices (A or B can be empty) s.t.:

- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A, b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.

Realizable rotation system of K_n : $O(n^2)$ -time algorithm to decide if generalized twisted Abstract rotation system of K_n : $O(n^5)$ -time algorithm to decide if generalized twisted

Slides created with IPE: Thanks to Otfried Cheong!

Conclusion

An abstract rotation system of K_n with $n \geq 7$ is generalized twisted \Leftrightarrow every subrotation system induced by 5 vertices is.

A realizable rotation system of K_n with $n \geq 3$ is generalized twisted \Leftrightarrow there exist two vertices v_1 and v_2 and a bipartition $A \cup B$ of the remaining vertices (A or B can be empty) s.t.:

- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A, b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.

Realizable rotation system of K_n : $O(n^2)$ -time algorithm to decide if generalized twisted Abstract rotation system of K_n : $O(n^5)$ -time algorithm to decide if generalized twisted

Next Step: Use generalized twisted drawings

One possible direction: Does every simple drawing of K_n contain a large generalized twisted drawing or large (generalized) convex drawing?

Slides created with IPE: Thanks to Otfried Cheong!

Conclusion

Thank you for listening!

An abstract rotation system of K_n with $n \geq 7$ is generalized twisted \Leftrightarrow every subrotation system induced by 5 vertices is.

A realizable rotation system of K_n with $n \geq 3$ is generalized twisted \Leftrightarrow

there exist two vertices v_1 and v_2 and a bipartition $A \cup B$ of the remaining vertices (A or B can be empty) s.t.:

- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A, b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.

Realizable rotation system of K_n : $O(n^2)$ -time algorithm to decide if generalized twisted

Abstract rotation system of K_n : $O(n^5)$ -time algorithm to decide if generalized twisted

Next Step: Use generalized twisted drawings

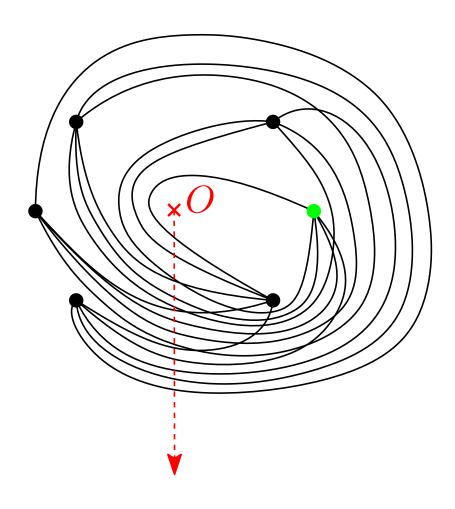
One possible direction: Does every simple drawing of K_n contain a large generalized twisted drawing or large (generalized) convex drawing?

Slides created with IPE: Thanks to Otfried Cheong!

Simple drawing D of K_n is generalized twisted

 \iff

∃ a pair of antipodal vi-cells [Aichholzer, García, Tejel, Vogtenhuber, W. 2022/2024]

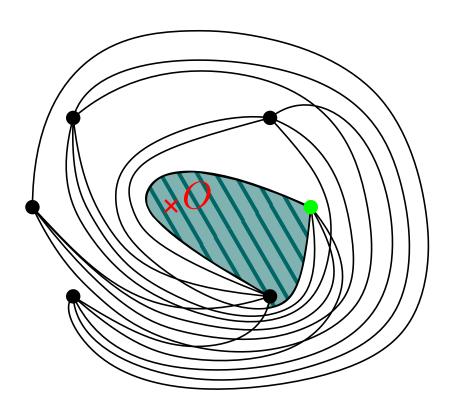


Simple drawing D of K_n is generalized twisted

 \iff

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary

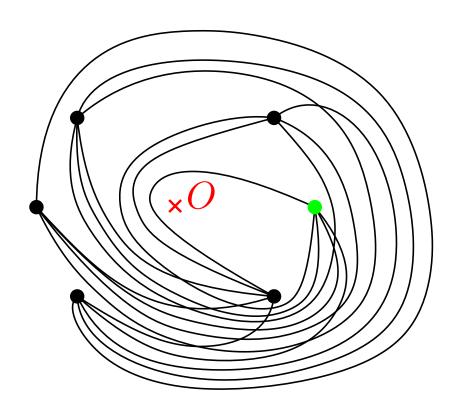


Simple drawing D of K_n is generalized twisted

 \Leftrightarrow

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary

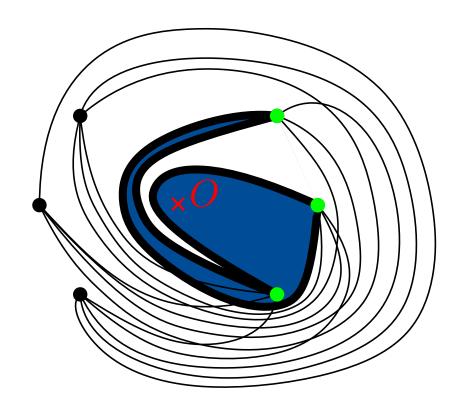


Simple drawing D of K_n is generalized twisted

 \Leftrightarrow

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary

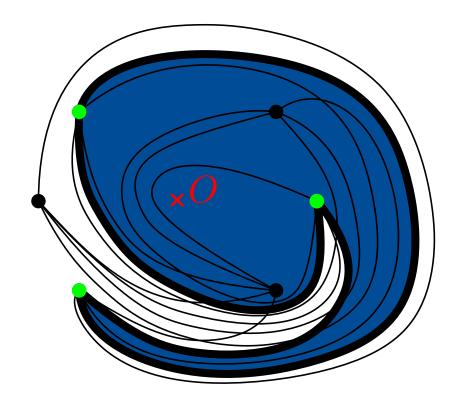


Simple drawing D of K_n is generalized twisted

 \Leftrightarrow

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary

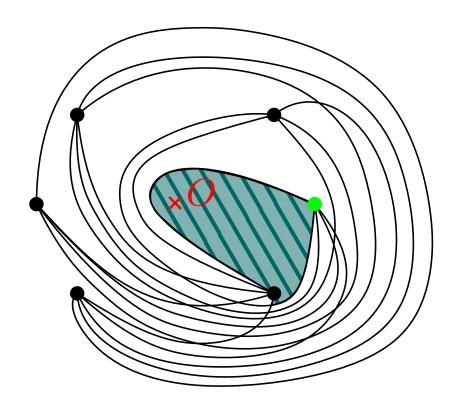


Simple drawing D of K_n is generalized twisted

 \Leftrightarrow

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary

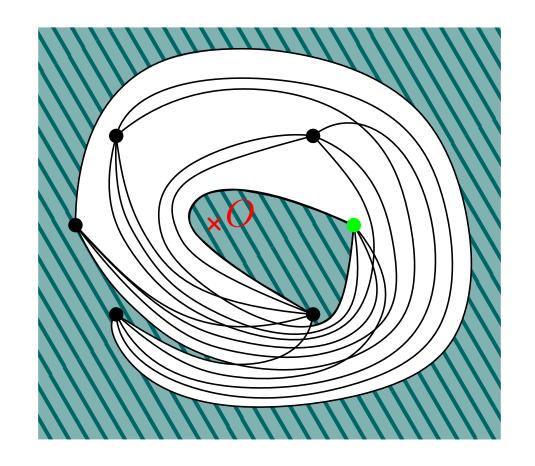


Simple drawing D of K_n is generalized twisted

 \iff

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary

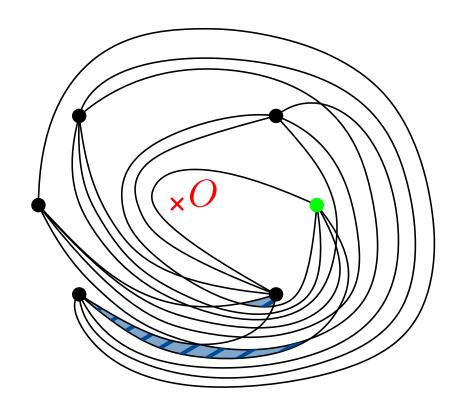


Simple drawing D of K_n is generalized twisted

 \Leftrightarrow

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary



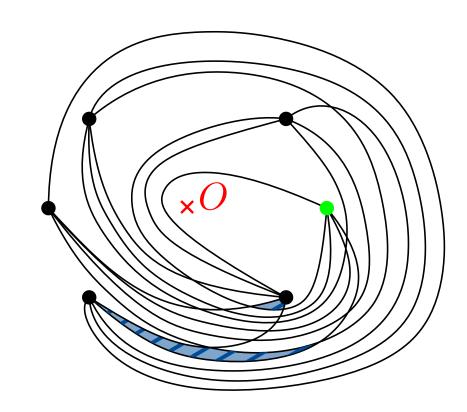
Simple drawing D of K_n is generalized twisted

 \iff

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary

antipodal ... \forall triangle in D: cells are on different sides



At most two pairs of antipodal vi-cells

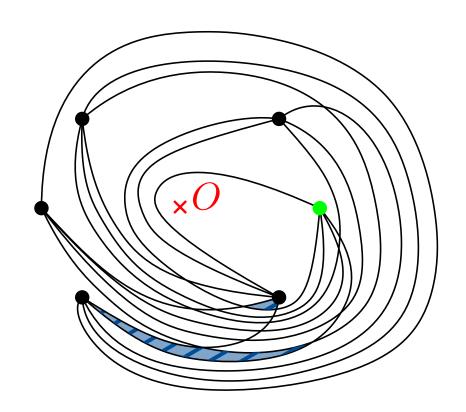
Simple drawing D of K_n is generalized twisted

 \iff

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary

antipodal ... \forall triangle in D: cells are on different sides



At most two pairs of antipodal vi-cells

If there are two, they are adjacent along an edge (crossing all it can)

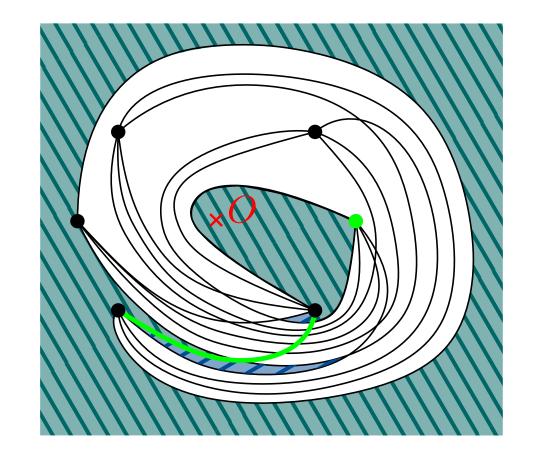
Simple drawing D of K_n is generalized twisted

 \Leftrightarrow

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary

antipodal ... \forall triangle in D: cells are on different sides



At most two pairs of antipodal vi-cells

If there are two, they are adjacent along an edge (crossing all it can)

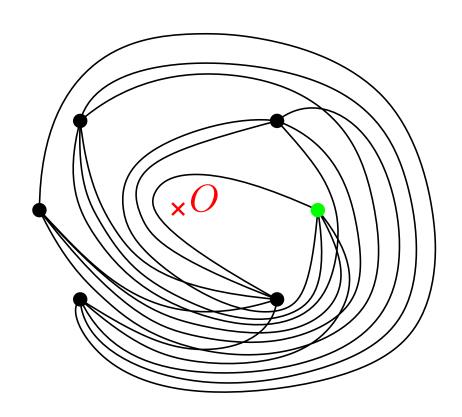
Simple drawing D of K_n is generalized twisted

 \Leftrightarrow

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary

antipodal ... \forall triangle in D: cells are on different sides



At most two pairs of antipodal vi-cells

If there are two, they are adjacent along an edge (crossing all it can)

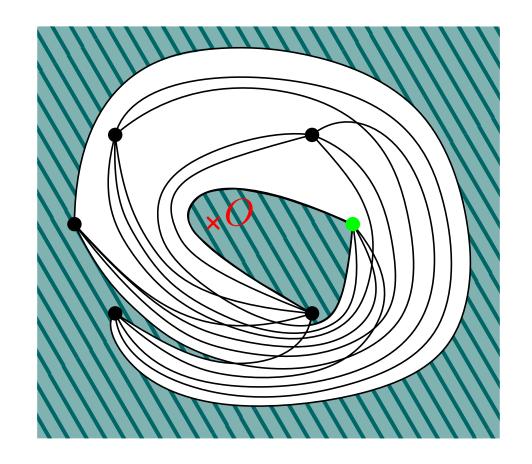
Simple drawing D of K_n is generalized twisted

 \iff

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary

antipodal ... \forall triangle in D: cells are on different sides



At most two pairs of antipodal vi-cells

If there are two, they are adjacent along an edge (crossing all it can)

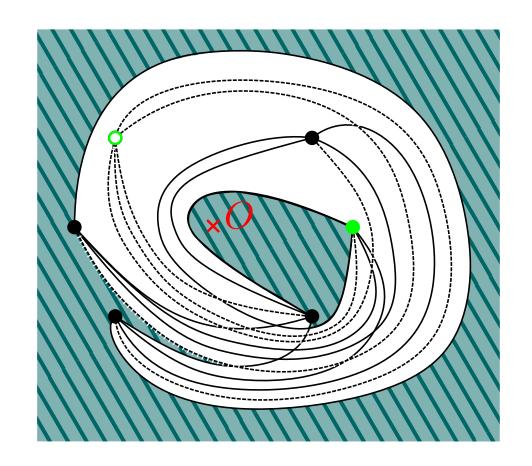
Simple drawing D of K_n is generalized twisted

 \iff

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary

antipodal ... \forall triangle in D: cells are on different sides



At most two pairs of antipodal vi-cells

If there are two, they are adjacent along an edge (crossing all it can)

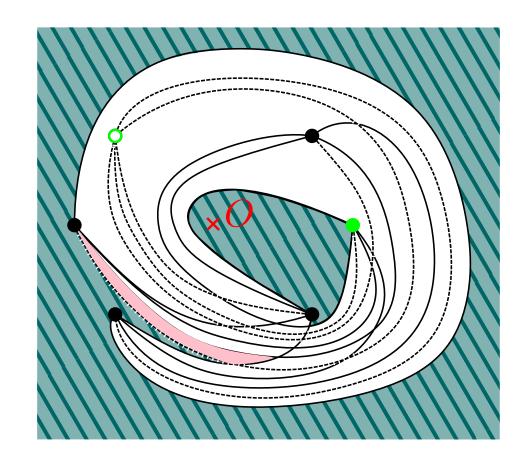
Simple drawing D of K_n is generalized twisted

 \iff

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary

antipodal ... \forall triangle in D: cells are on different sides



At most two pairs of antipodal vi-cells

If there are two, they are adjacent along an edge (crossing all it can)

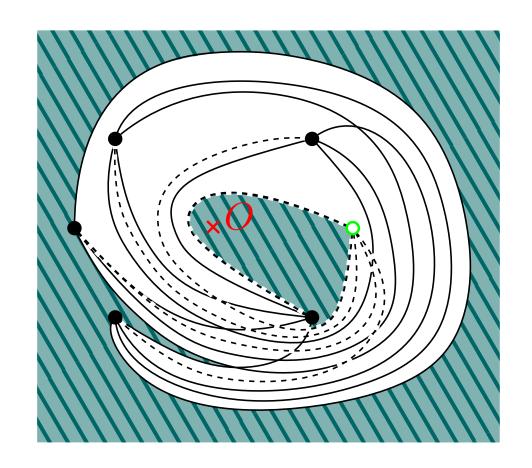
Simple drawing D of K_n is generalized twisted

 \Leftrightarrow

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary

antipodal ... \forall triangle in D: cells are on different sides



At most two pairs of antipodal vi-cells

If there are two, they are adjacent along an edge (crossing all it can)

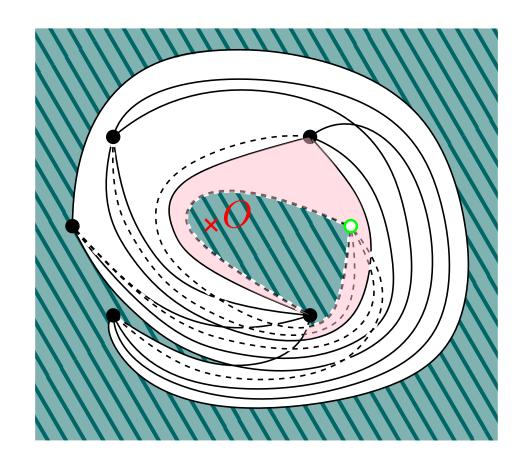
Simple drawing D of K_n is generalized twisted

 \Leftrightarrow

∃ a pair of antipodal vi-cells

vi-cell ... cell with a vertex on its boundary

antipodal ... \forall triangle in D: cells are on different sides



At most two pairs of antipodal vi-cells

If there are two, they are adjacent along an edge (crossing all it can)

An abstract rotation system of K_n with $n \geq 7$ is generalized twisted

An abstract rotation system of K_n with $n \geq 7$ is generalized twisted \Leftrightarrow every subrotation system induced by 5 vertices is.

Proof by induction

An abstract rotation system of K_n with $n \ge 7$ is generalized twisted \Leftrightarrow every subrotation system induced by 5 vertices is.

Proof by induction

Verification with computer for $7 \le n \le 11$

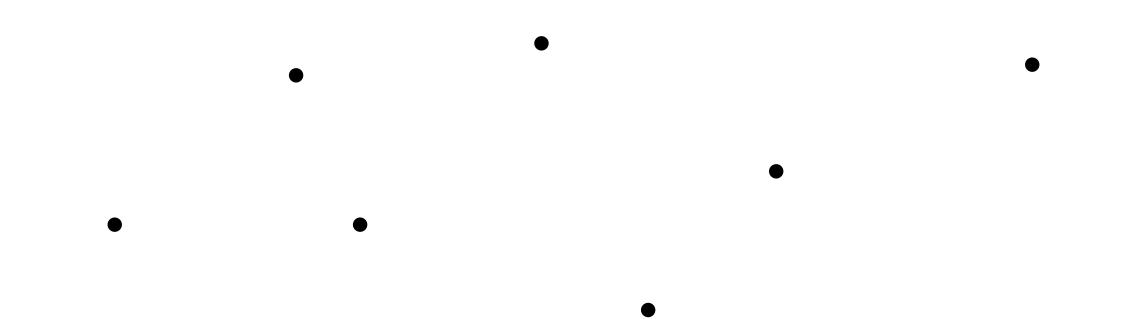
An abstract rotation system of K_n with $n \ge 7$ is generalized twisted \Leftrightarrow every subrotation system induced by 5 vertices is.

Proof by induction

Verification with computer for $7 \le n \le 11$

By hypothesis every rotations system induced by $\leq n-1$ vertices is generalized twisted.

An abstract rotation system of K_n with $n \geq 7$ is generalized twisted



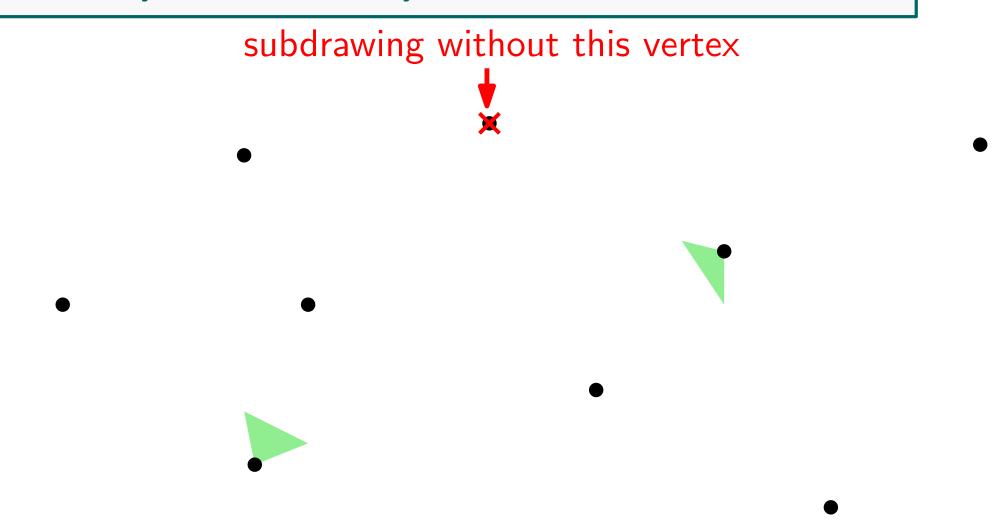
An abstract rotation system of K_n with $n \geq 7$ is generalized twisted

 \Leftrightarrow every subrotation system induced by 5 vertices is.

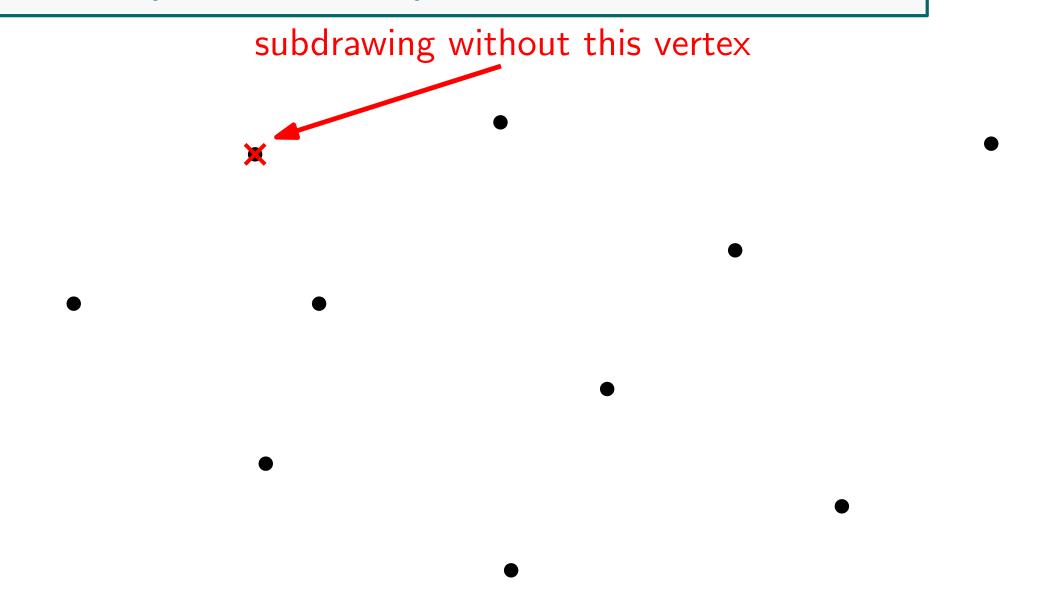
subdrawing without this vertex

•

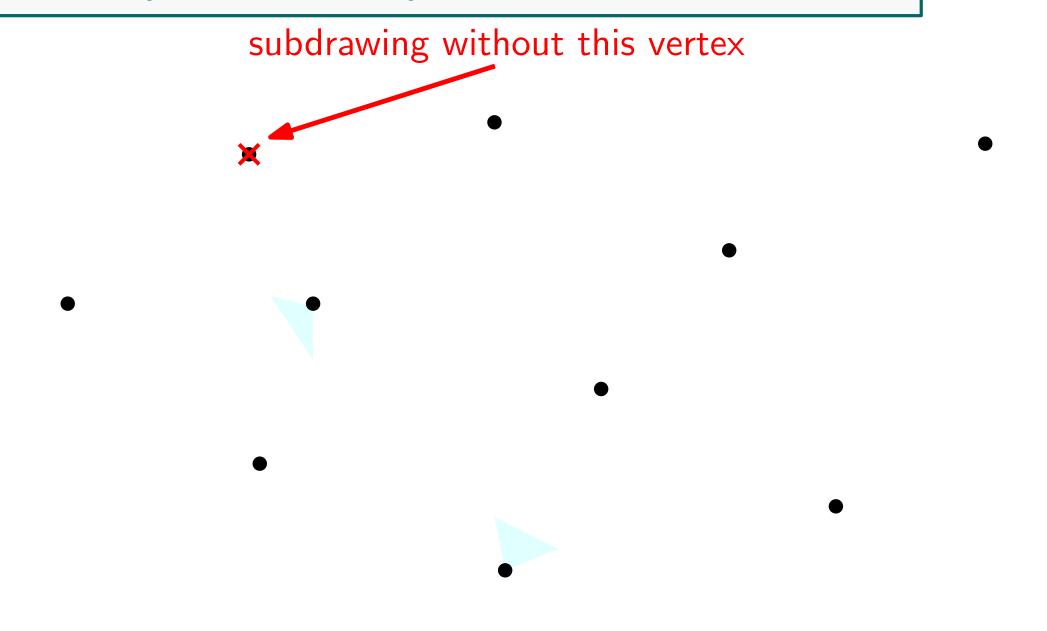
An abstract rotation system of K_n with $n \geq 7$ is generalized twisted



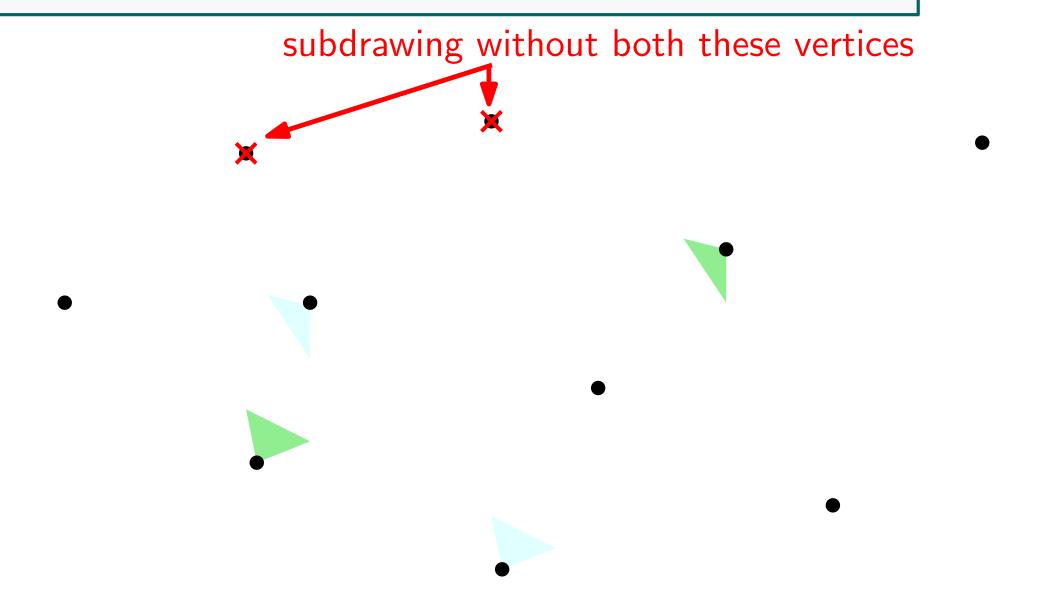
An abstract rotation system of K_n with $n \geq 7$ is generalized twisted



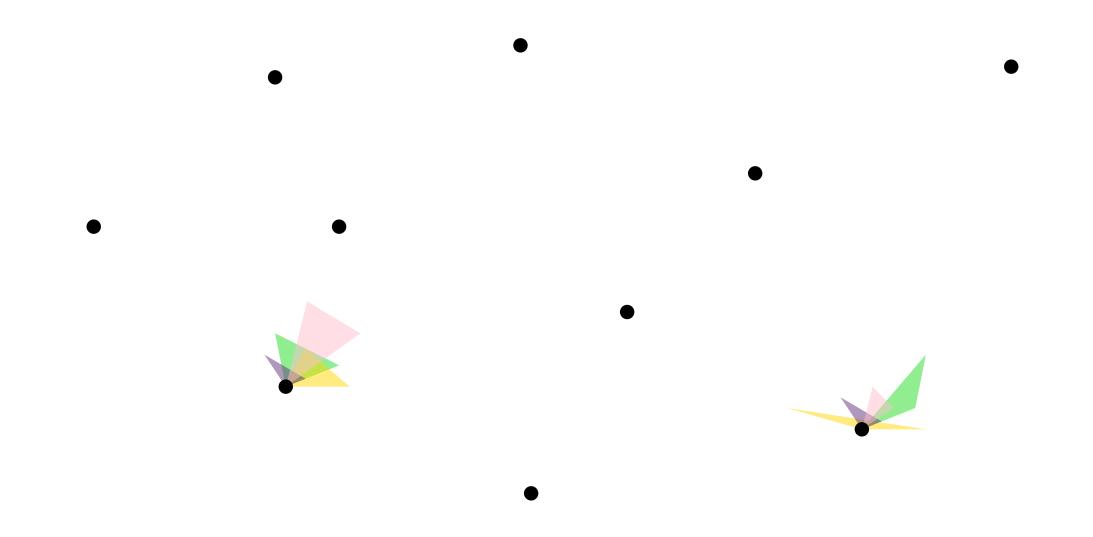
An abstract rotation system of K_n with $n \geq 7$ is generalized twisted



An abstract rotation system of K_n with $n \geq 7$ is generalized twisted



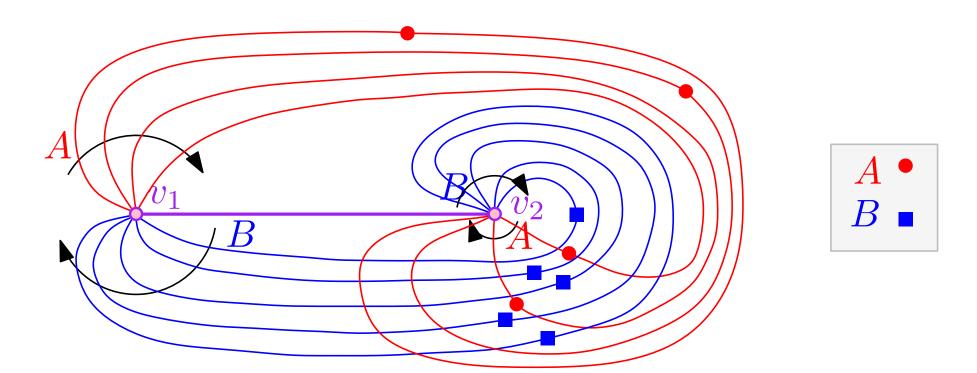
An abstract rotation system of K_n with $n \ge 7$ is generalized twisted \Leftrightarrow every subrotation system induced by 5 vertices is.



Characterization via Pair with Bipartition: Glimpse at Proof Sketch

A realizable rotation system of K_n with $n \geq 3$ is generalized twisted \Leftrightarrow there exist two vertices v_1 and v_2 and a bipartition $A \cup B$ of the remaining vertices (A or B can be empty) such that:

- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A$, $b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.



Characterization via Pair with Bipartition: Glimpse at Proof Sketch

A realizable rotation system of K_n with $n \geq 3$ is generalized twisted \Leftrightarrow there exist two vertices v_1 and v_2 and a bipartition $A \cup B$ of the remaining vertices (A or B can be empty) such that:

- $\forall a, a'$ in A, the edge aa' crosses v_1v_2 .
- $\forall b, b'$ in B, the edge bb' crosses v_1v_2 .
- $\forall a \in A, b \in B$, the edge ab does not cross v_1v_2 .
- Rotation of v_1 : Beginning at v_2 , all vertices in B appear before all vertices in A.
- Rotation of v_2 : Beginning at v_1 , all vertices in B appear before all vertices in A.

