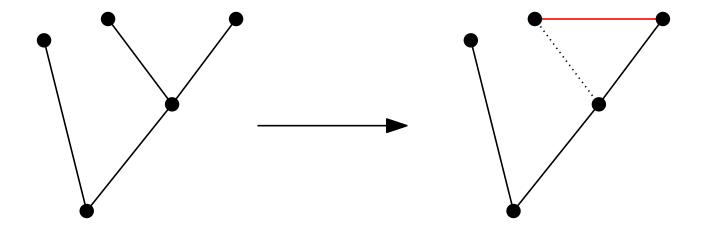


Flipping odd Matchings in geometric and combinatoric matchings

Oswin Aichholzer, Sofia Brenner, Joseph Dorfer, Hung P. Hoang, **Daniel Perz**, Christian Rieck, Francesco Verciani

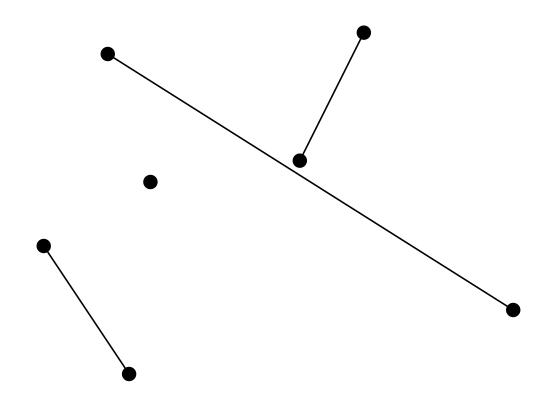
Flipping ...

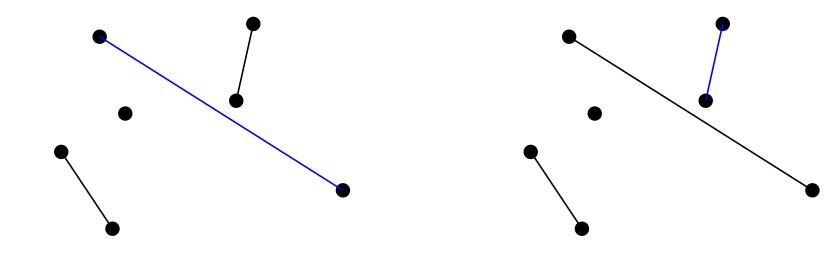
Edge flip: Replace one edge with another (allowed) edge.

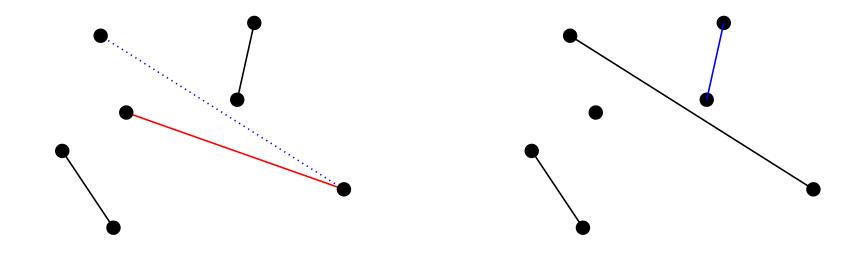


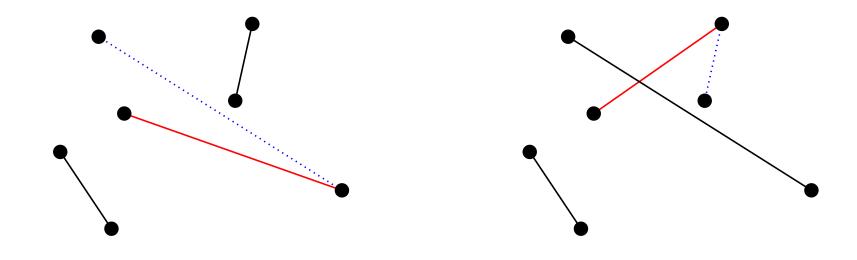
... odd matchings ...

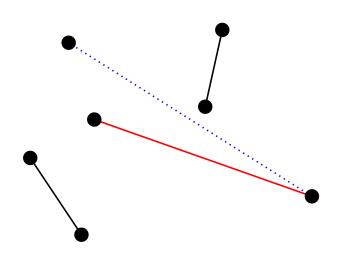
Set with 2m+1 vertices. Matching with m edges, one vertex is isolated

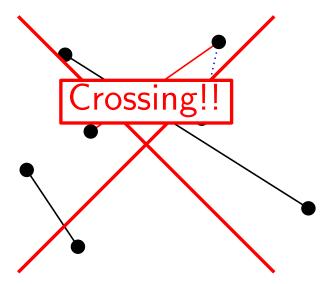


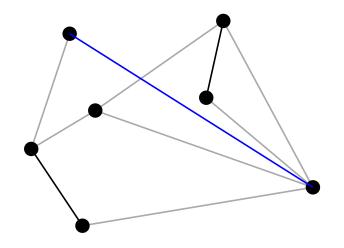


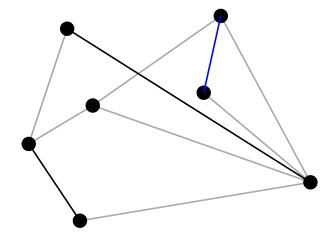


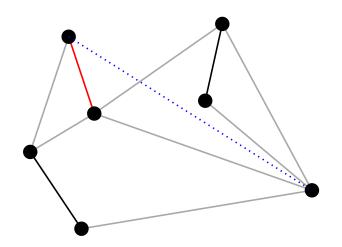


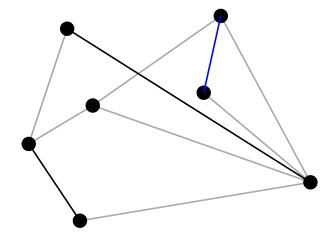


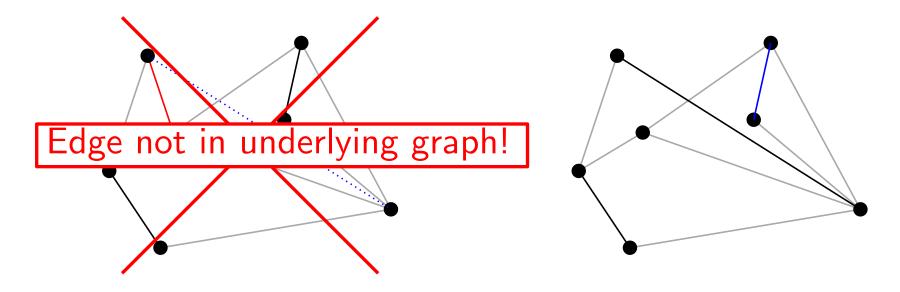


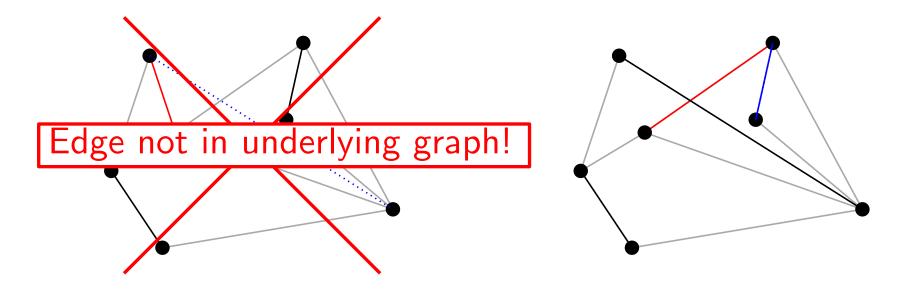


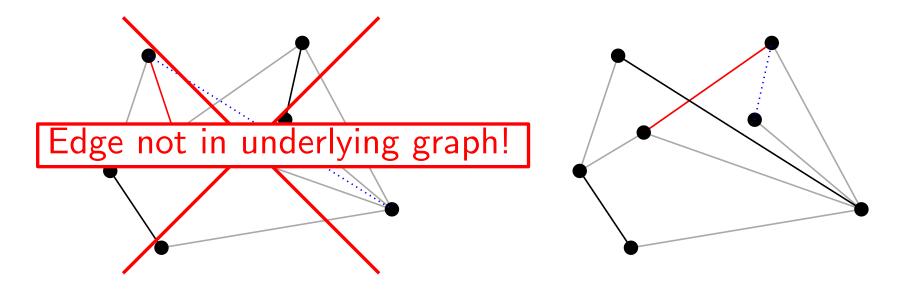




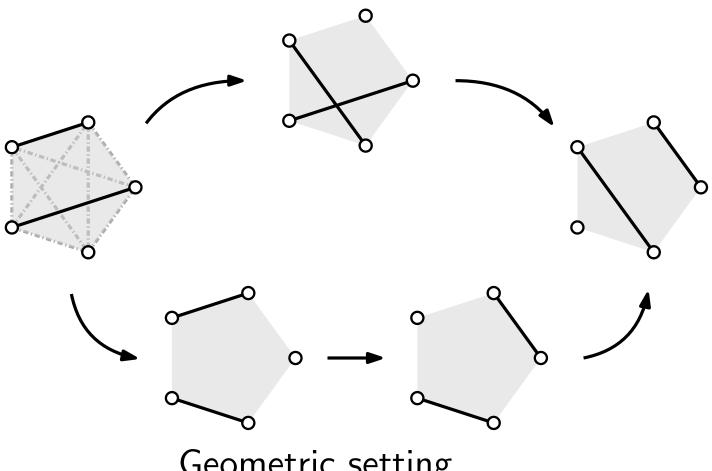








Combinatorial setting



Classic questions in reconfiguration

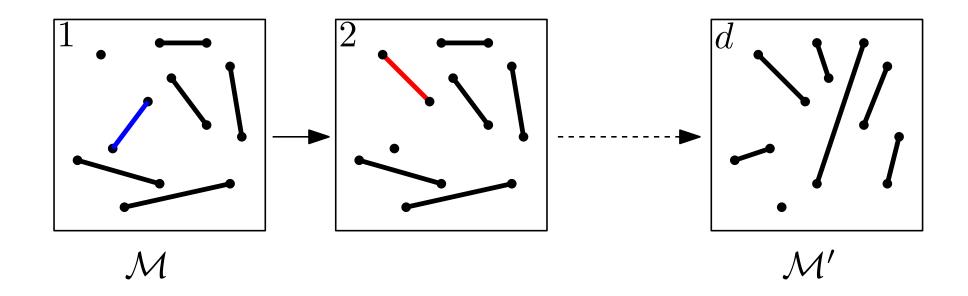
Connectivity: Can any odd matching be transformed into any other odd matching via flips?



Classic questions in reconfiguration

Connectivity: Can any odd matching be transformed into any other odd matching via flips?

Diameter: What is the smallest number d such that any odd matching can be transformed to any other odd matching with d flips?



Classic questions in reconfiguration

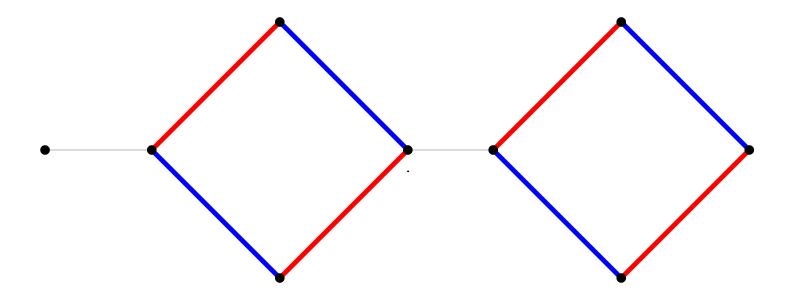
Connectivity: Can any odd matching be transformed into any other odd matching via flips?

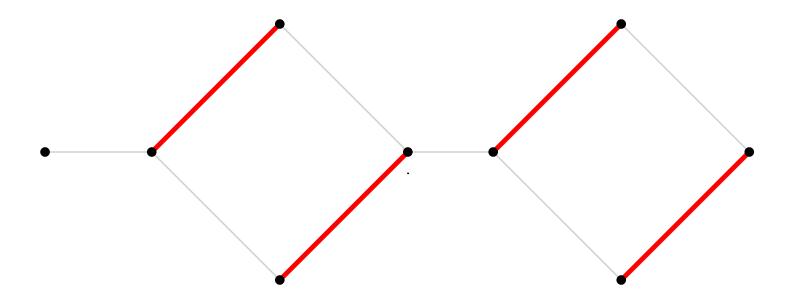
Diameter: What is the smallest number d such that any odd matching can be transformed to any other odd matching with d flips?

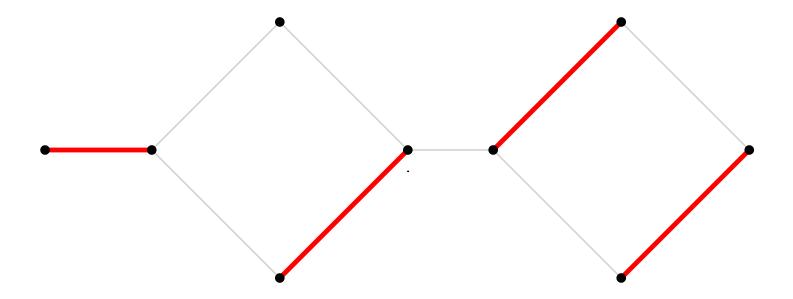
Complexity: Given two odd matchings $\mathcal{M}, \mathcal{M}'$ and an integer k. What is the computational complexity to decide whether \mathcal{M} can be transformed into \mathcal{M}' in at most k flips.

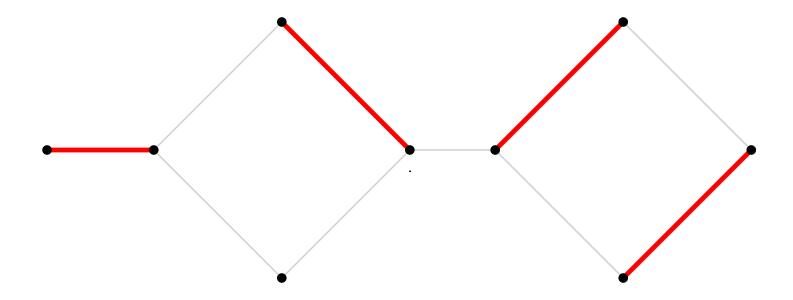
Results

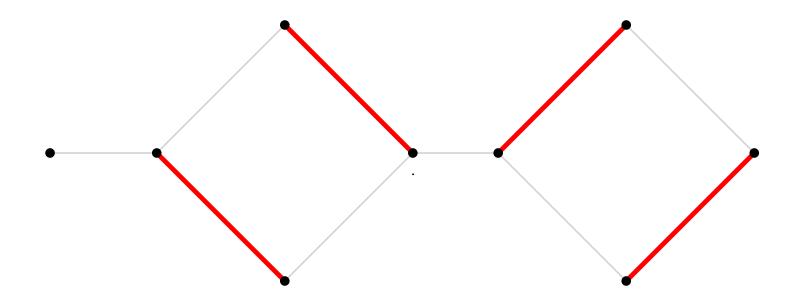
Setting	Connect.	Diam.	Compl.
Convex	Yes [ABPS]	$\leq \frac{3n}{2} - \mathcal{O}(1)$	Open
General	Yes [ABPS]	$\mathcal{O}(n^2)$ [ABPS]	NP
Grid	Yes	$\Theta(n)$	NP
Graphs	Charact.	$\Theta(n)$	NP



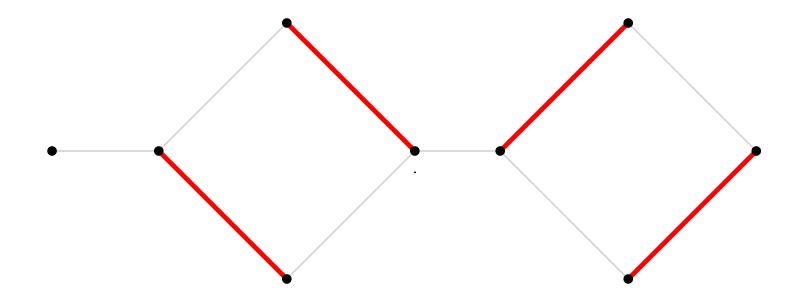








Can't get from M to M' with flips!



Can't get from M to M' with flips! For which graphs can we transform any odd matching into any other odd matching via flips?

Characterization for graphs

Observation:

- If an edge is in no odd matching, we can omit it.
- If an edge is in every odd matching we can omit its vertices.

Characterization for graphs

Observation:

- If an edge is in no odd matching, we can omit it.
- If an edge is in every odd matching we can omit its vertices.

Theorem: Given a graph G. We can transform any odd matching to any other odd matching on G if and only if for any edge e = (u, v) one of the following holds:

- e is in every or in no odd matching of G.
- G u or G v admits a plane perfect matchings.

For every edge e = (u, v):

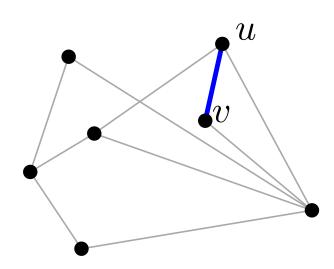
- Check whether G-u or G-v has a perfect matching.
- or G e has an odd matching (e in none).
- or G u v has an odd matching (e in every).

If this is true for every edge, then connected

For every edge e = (u, v):

- Check whether G-u or G-v has a perfect matching.
- or G e has an odd matching (e in none).
- or G u v has an odd matching (e in every).

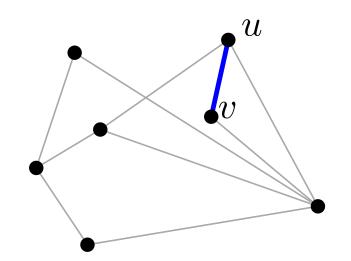
If this is true for every edge, then connected

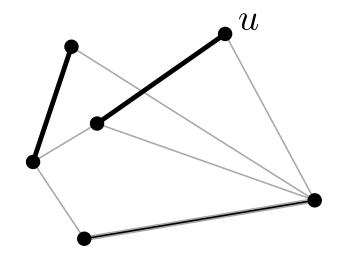


For every edge e = (u, v):

- Check whether G-u or G-v has a perfect matching.
- or G e has an odd matching (e in none).
- or G u v has an odd matching (e in every).

If this is true for every edge, then connected





G-v has a perfect matching!

For every edge e = (u, v):

- Check whether G-u or G-v has a perfect matching.
- or G e has an odd matching (e in none).
- or G u v has an odd matching (e in every).

If this is true for every edge, then connected

Checking if a graph has a perfect or odd matching:

- $\mathcal{O}(n^{2.5})$. [Micali & Vazirani 1980]

For every edge e = (u, v):

- Check whether G-u or G-v has a perfect matching.
- or G e has an odd matching (e in none).
- or G u v has an odd matching (e in every).

If this is true for every edge, then connected

Checking if a graph has a perfect or odd matching:

- $\mathcal{O}(n^{2.5})$. [Micali & Vazirani 1980]
- $\mathcal{O}(n^2)$ edges to check.

For every edge e = (u, v):

- Check whether G-u or G-v has a perfect matching.
- or G e has an odd matching (e in none).
- or G u v has an odd matching (e in every).

If this is true for every edge, then connected

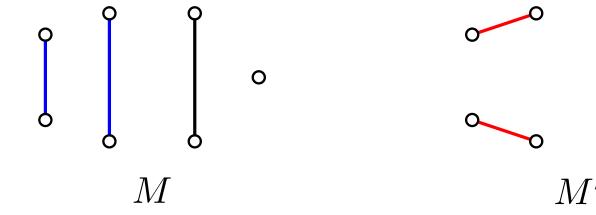
Checking if a graph has a perfect or odd matching:

- $\mathcal{O}(n^{2.5})$. [Micali & Vazirani 1980]
- $\mathcal{O}(n^2)$ edges to check.

Total runtime: $\mathcal{O}(n^{4.5})$

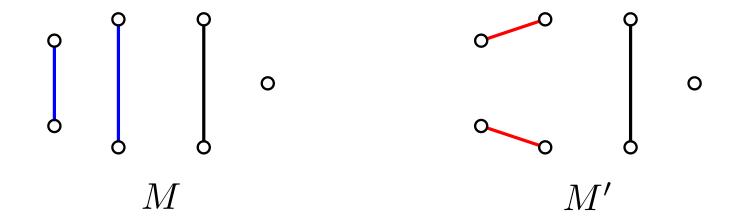
Convex point sets: definitions

Happy edge: An edge that is both in M and M'. Bad happy edge: A happy edge that splits the point set such that the isolated vertex is in one part and Mdiffers from M' in the other part.



Convex point sets: definitions

Happy edge: An edge that is both in M and M'. Bad happy edge: A happy edge that splits the point set such that the isolated vertex is in one part and M differs from M' in the other part.



Note: Happy edges on the convex hull are never bad!

Cute little lemma

Lemma:

Given two odd matchings M and M', such that $M \cup M'$ is crossing free, and let

- -B be the number of bad happy edges of $M \cup M'$,
- -C be the number of edges of M in cycles of $M \cup M'$,
- -c be the number of cycles of $M \cup M'$,
- -D be the edges of M in a path of $M \cup M'$.

Then transforming M into M' needs

$$2B+C+2c+D$$
 flips.

Cute little lemma

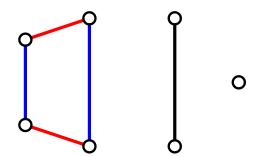
Lemma:

Given two odd matchings M and M', such that $M \cup M'$ is crossing free, and let

- -B be the number of bad happy edges of $M \cup M'$,
- -C be the number of edges of M in cycles of $M \cup M'$,
- -c be the number of cycles of $M \cup M'$,
- -D be the edges of M in a path of $M \cup M'$.

Then transforming M into M' needs

$$2B+C+2c+D$$
 flips.



Cute little lemma

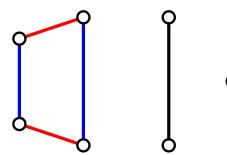
Lemma:

Given two odd matchings M and M', such that $M \cup M'$ is crossing free, and let

- -B be the number of bad happy edges of $M \cup M'$,
- -C be the number of edges of M in cycles of $M \cup M'$,
- -c be the number of cycles of $M \cup M'$,
- -D be the edges of M in a path of $M \cup M'$.

Then transforming M into M' needs

$$2B+C+2c+D$$
 flips.



$$B = 1$$
, $C = 2$, $c = 1$, $D = 0$

Cute little lemma

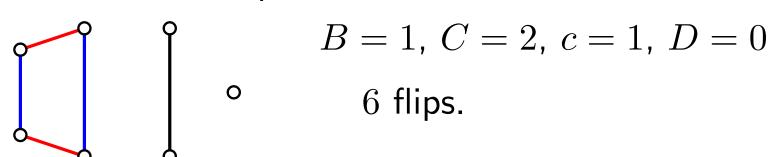
Lemma:

Given two odd matchings M and M', such that $M \cup M'$ is crossing free, and let

- -B be the number of bad happy edges of $M \cup M'$,
- -C be the number of edges of M in cycles of $M \cup M'$,
- -c be the number of cycles of $M \cup M'$,
- -D be the edges of M in a path of $M \cup M'$.

Then transforming M into M' needs

$$2B+C+2c+D$$
 flips.

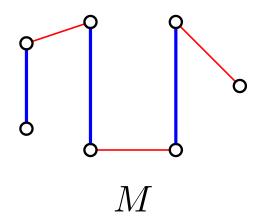


Upper bound of convex set

Given an odd matching M.

Take any odd matching M_H on the convex hull:

$$B=0$$
, $c\leq m/2$ cycles, and $C+D\leq m$.



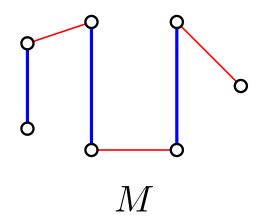
At most 3m/2 flips from M to M_H .

Upper bound of convex set

Given an odd matching M.

Take any odd matching M_H on the convex hull:

$$B=0$$
, $c\leq m/2$ cycles, and $C+D\leq m$.



At most 3m/2 flips from M to M_H .

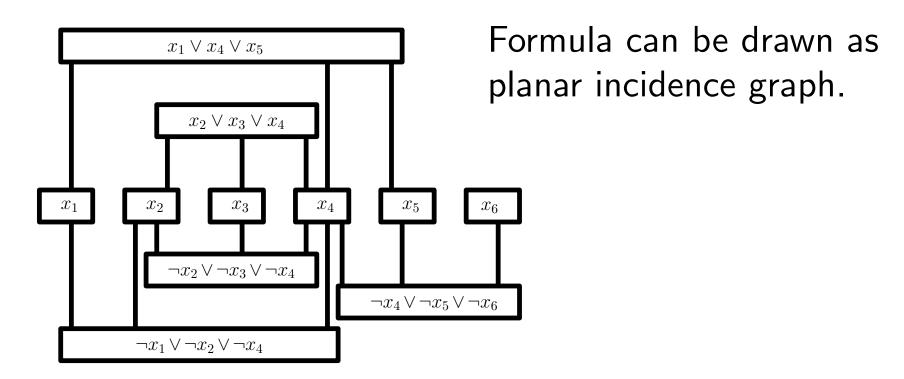
At most 3m = 3n/2 flips from M to M'.

Given a point set and two odd matchings M and M'. How hard is it to decide, whether we can reconfigure M to M' in k flips?

Given a point set and two odd matchings M and M'. How hard is it to decide, whether we can reconfigure M to M' in k flips?

Reduction from PlanarMonotone3SAT

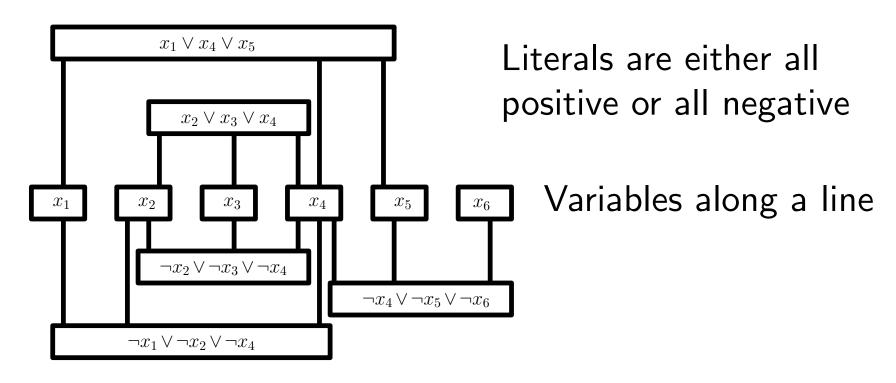
Reduction from PlanarMonotone3SAT



PlanarMonotone3SAT representation of

$$(x_1 \lor x_4 \lor x_5) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4) \land (\neg x_2 \lor \neg x_3 \lor \neg x_4) \land (\neg x_4 \lor \neg x_5 \lor \neg x_6)$$

Reduction from PlanarMonotone3SAT

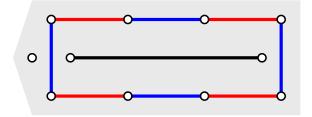


PlanarMonotone3SAT representation of

$$(x_1 \lor x_4 \lor x_5) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4) \land (\neg x_2 \lor \neg x_3 \lor \neg x_4) \land (\neg x_4 \lor \neg x_5 \lor \neg x_6)$$

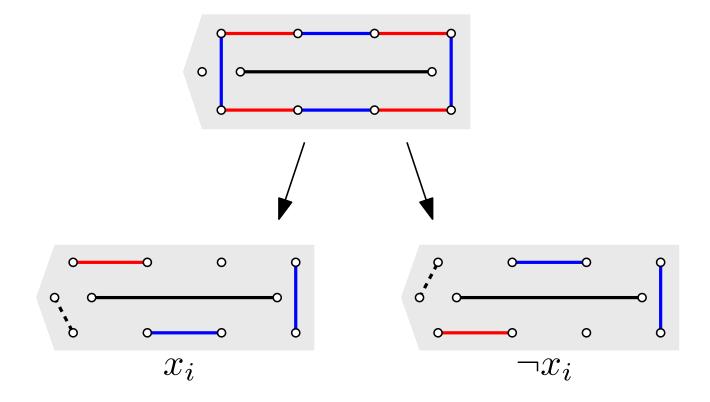
Gadgets

Variable gadget



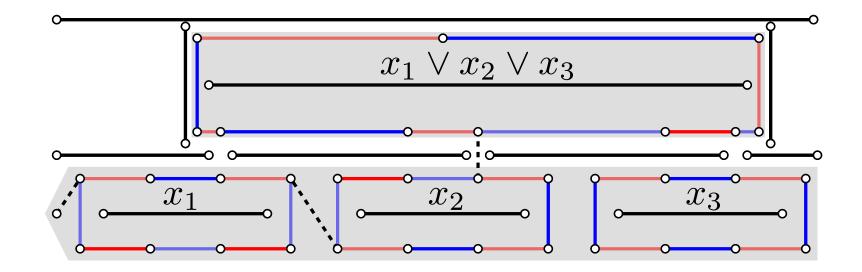
Gadgets

Variable gadget

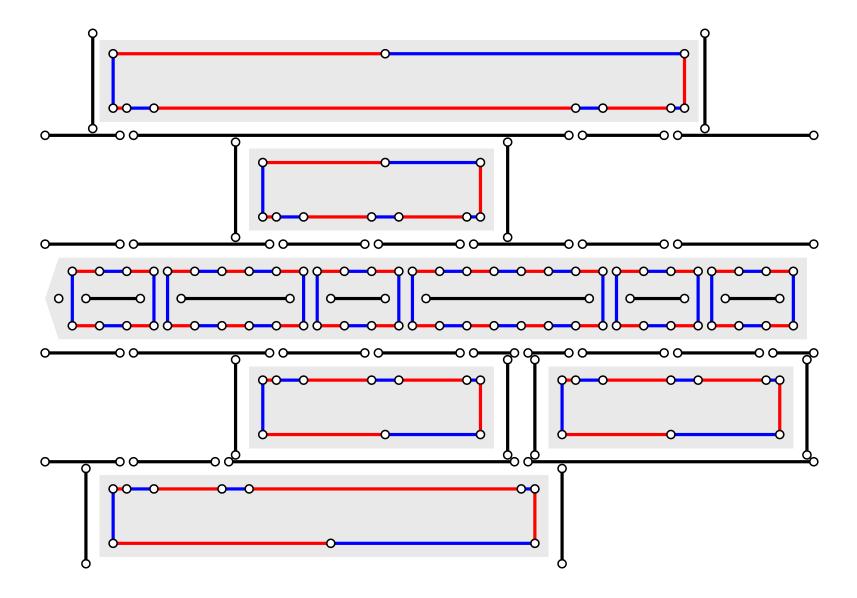


Gadgets

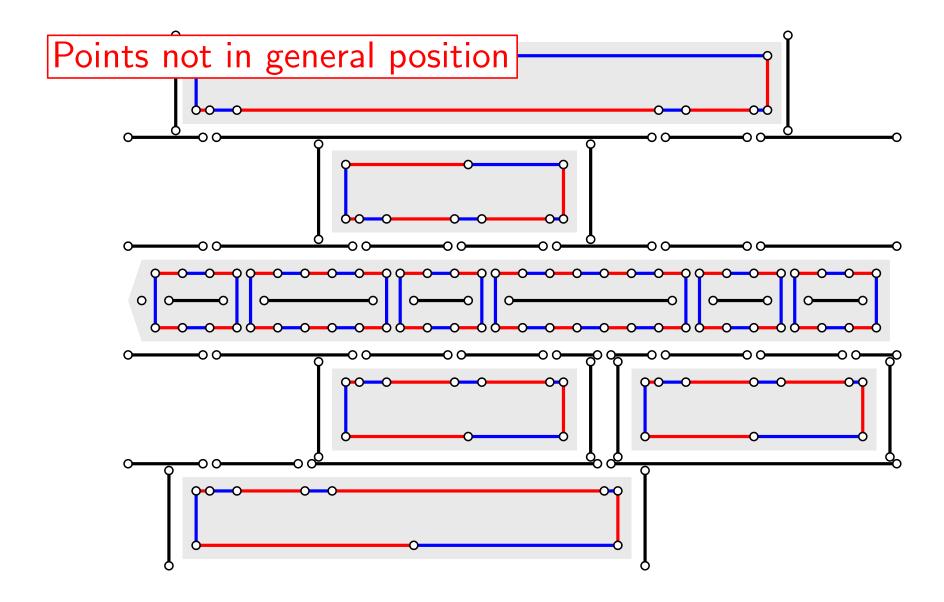
Clause gadget



NP-hardness: Construction



NP-hardness: Construction



Given a point set S of size n on a $w \times h$ grid. Task: Find mapping ϕ for all points of S, such that

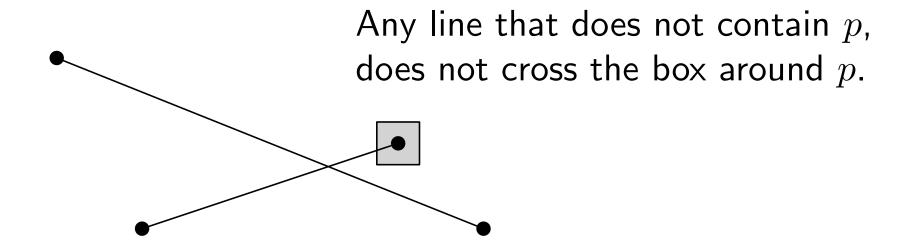
- if a point p is above the line qr, then $\phi(p)$ is above the line $\phi(q)\phi(r)$.
- $\phi(S)$ is in general position.
- $\phi(S)$ is on a $f(w) \times g(w)$ grid, f,g are polynomial functions.

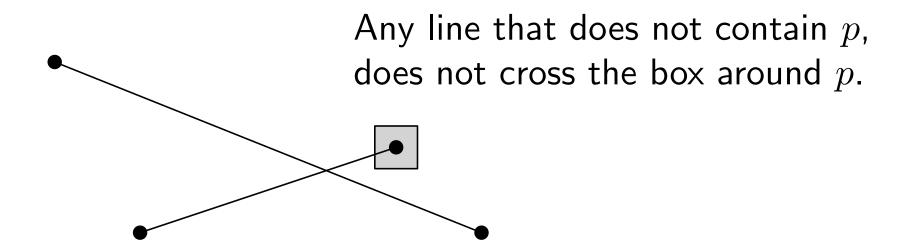
Given a point set S of size n on a $w \times h$ grid.

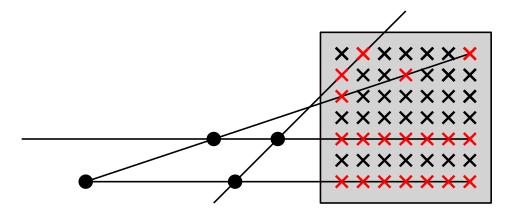
Task: Find mapping ϕ for all points of S, such that

- if a point p is above the line qr, then $\phi(p)$ is above the line $\phi(q)\phi(r)$.
- $\phi(S)$ is in general position.
- $\phi(S)$ is on a $f(w) \times g(w)$ grid, f,g are polynomial functions.

Idea: Place $\frac{1}{16h^3w^3}$ box around each point. $(n^4+n)\times(n^4+n)$ grid inside each box.







Can choose one point inside box that is not on a line.

Conclusion

Setting	Connect.	Diam.	Compl.
Convex	Yes [ABPS]	$\leq \frac{3n}{2} - \mathcal{O}(1)$	Open
General	Yes [ABPS]	$\Omega(n)$, $\mathcal{O}(n^2)$ [ABPS]	NP
Grid	Yes	$\Theta(n)$	NP
Graphs	Charact.	$\Theta(n)$	NP

Geometric: Improve the bounds

Combinatoric: Which other graph families connected?

Conclusion

Setting	Connect.	Diam.	Compl.
Convex	Yes [ABPS]	$\leq \frac{3n}{2} - \mathcal{O}(1)$	Open
General	Yes [ABPS]	$\Omega(n)$, $\mathcal{O}(n^2)$ [ABPS]	NP
Grid	Yes	$\Theta(n)$	NP
Graphs	Charact.	$\Theta(n)$	NP

Geometric: Improve the bounds

Combinatoric: Which other graph families connected?