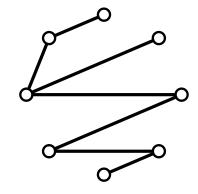


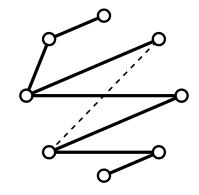
Constrained Flips in Plane Spanning Trees

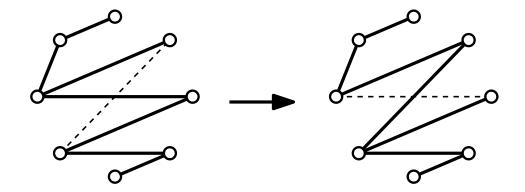
Oswin Aichholzer, Joseph Dorfer, Birgit Vogtenhuber

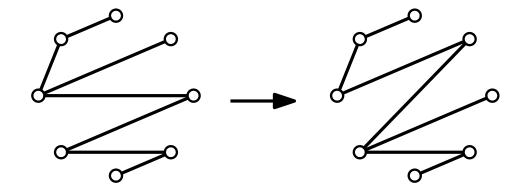
Graz University of Technology

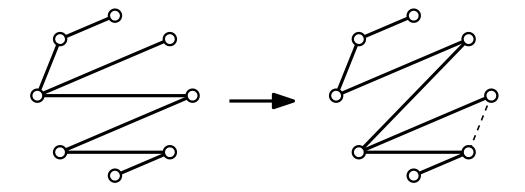


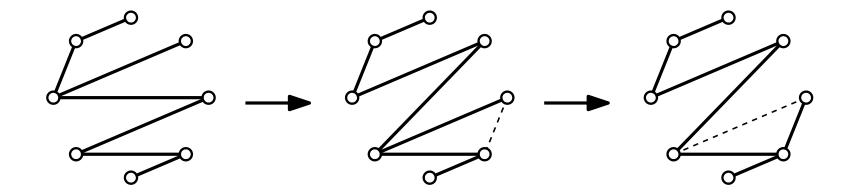


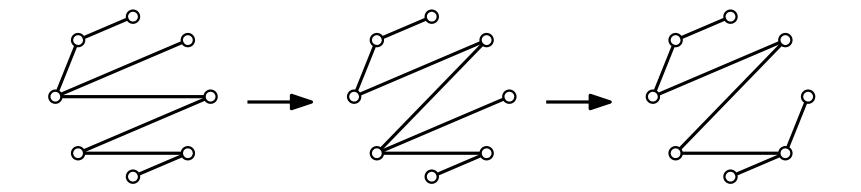


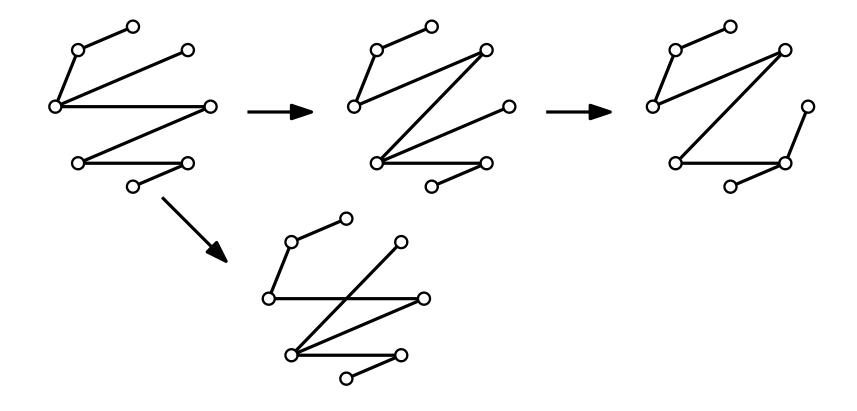


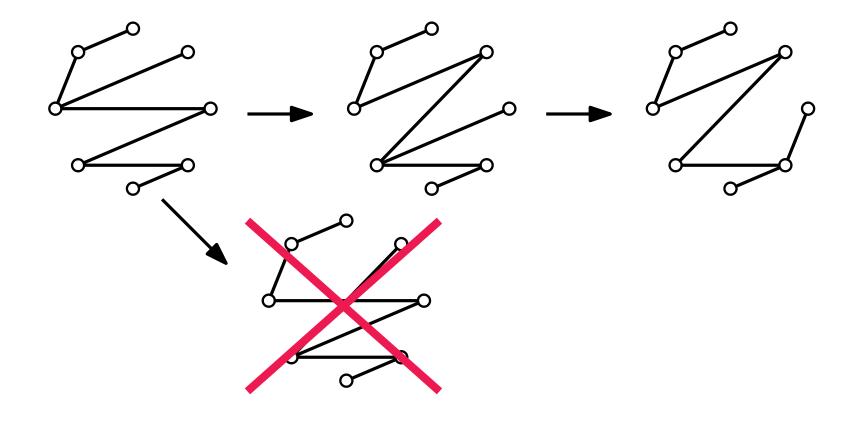


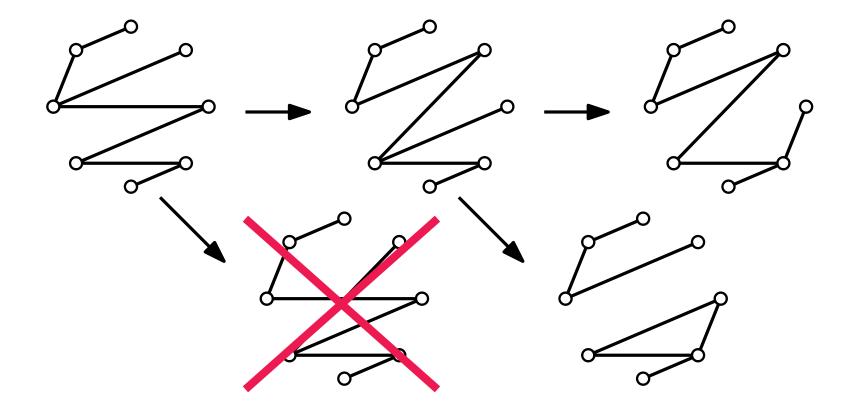


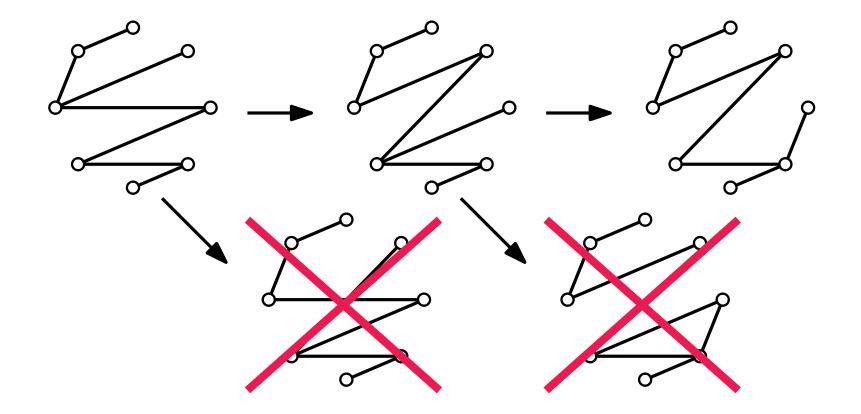


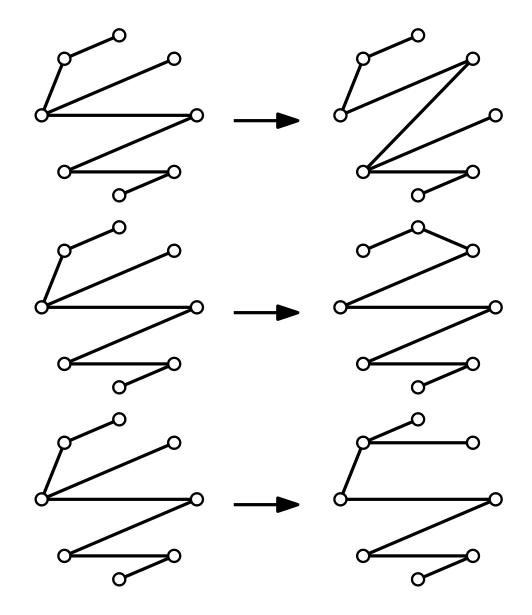


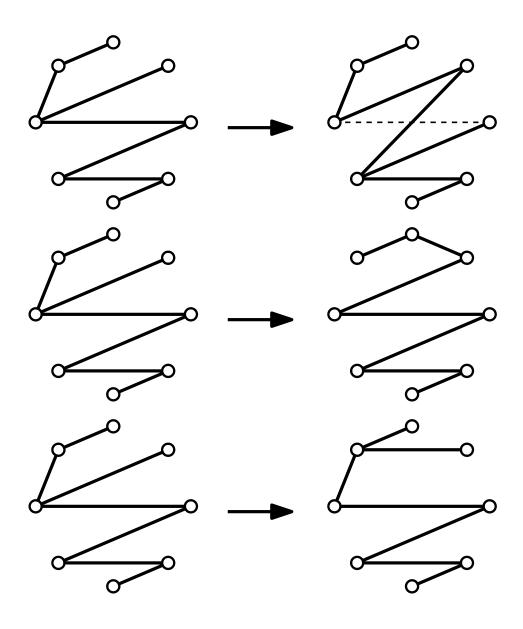






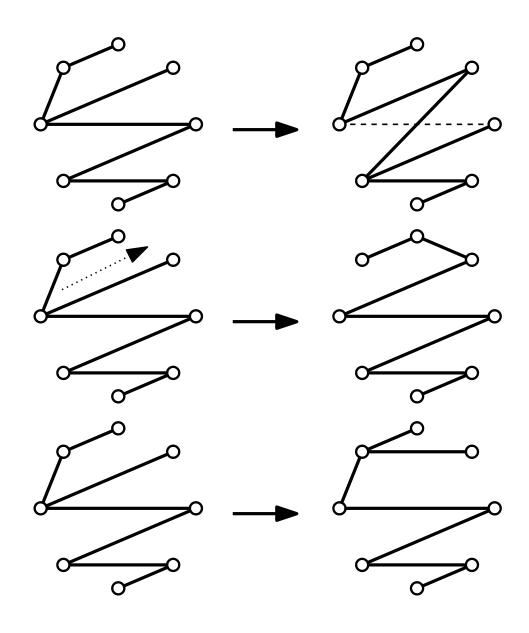






Crossing Flip:

Added and removed edge cross

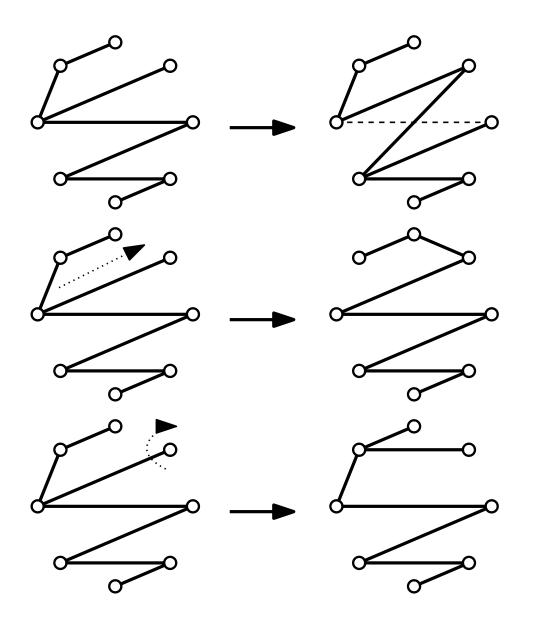


Crossing Flip:

Added and removed edge cross

Compatible Flip:

Added and removed edge do not cross



Crossing Flip:

Added and removed edge cross

Compatible Flip:

Added and removed edge do not cross

Rotation:

Added and removed edge share a vertex

Flipping - Central Questions

Connectedness: Transform any structure into any other via flips?

Flipping - Central Questions

Connectedness: Transform any structure into any other via flips?

Diameter: Worst case number of flips between configurations?

Flipping - Central Questions

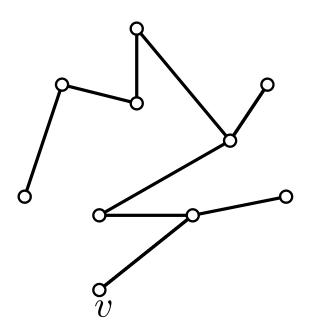
Connectedness: Transform any structure into any other via flips?

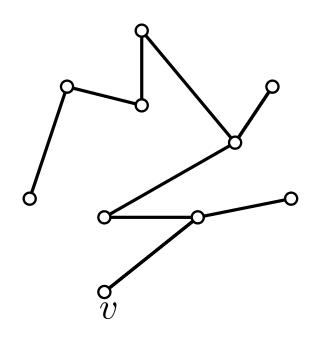
Diameter: Worst case number of flips between configurations?

Complexity: Two specific configurations: How many flips needed? How to compute flip sequence?

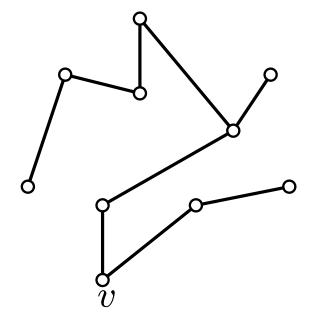
Diameter

Complexity



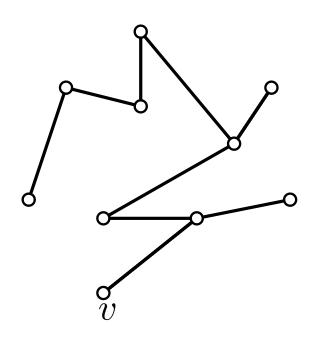


Pick a vertex v on the boundary. Flip into fan at v.

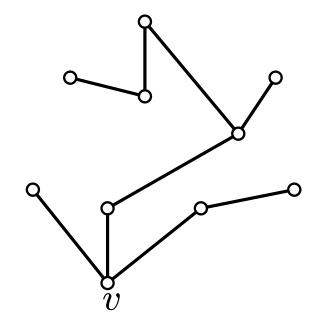


Diameter

Complexity

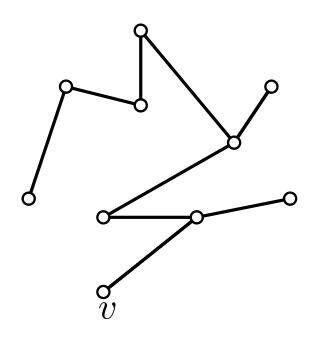


Pick a vertex v on the boundary. Flip into fan at v.

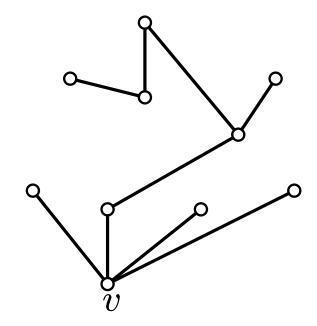


Diameter

Complexity

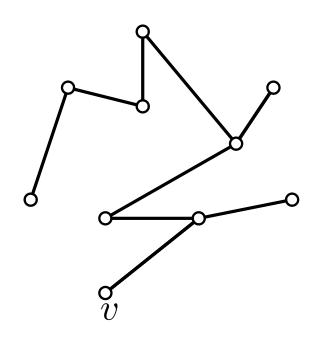


Pick a vertex v on the boundary. Flip into fan at v.

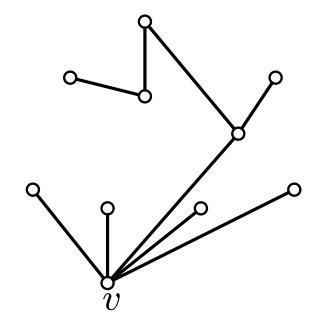


Diameter

Complexity

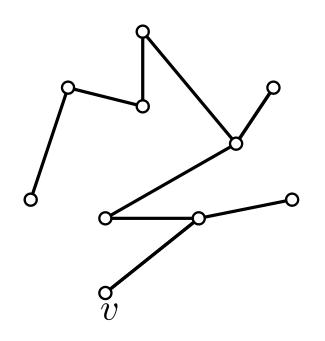


Pick a vertex v on the boundary. Flip into fan at v.

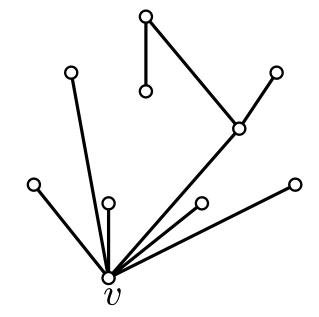


Diameter

Complexity

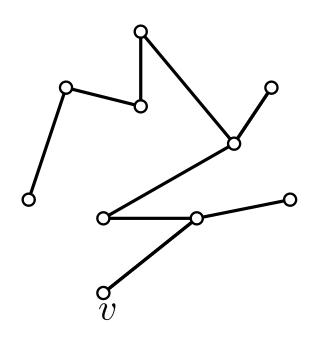


Pick a vertex v on the boundary. Flip into fan at v.

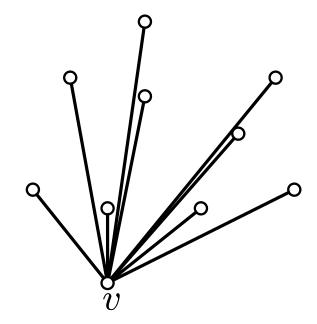


Diameter

Complexity

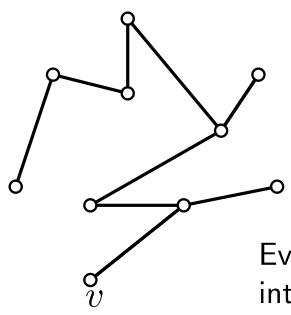


Pick a vertex v on the boundary. Flip into fan at v.



Diameter

Complexity



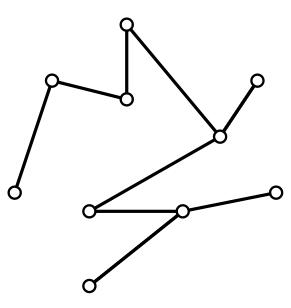
Pick a vertex v on the boundary. Flip into fan at v.

Every tree can be flipped into a fan at some boundary vertex and back.

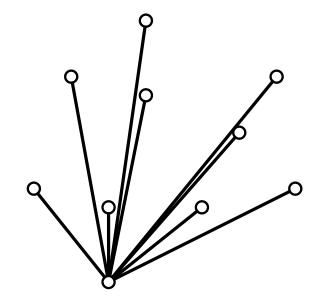
⇒ Connectedness

Diameter

Complexity

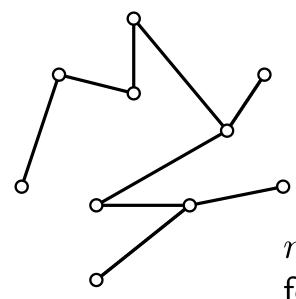


Increase the number of edges incident to v in every flip.

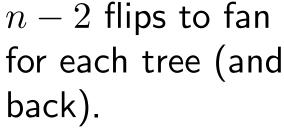


Diameter

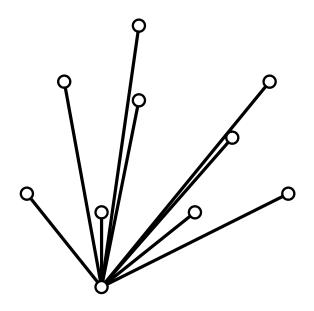
Complexity

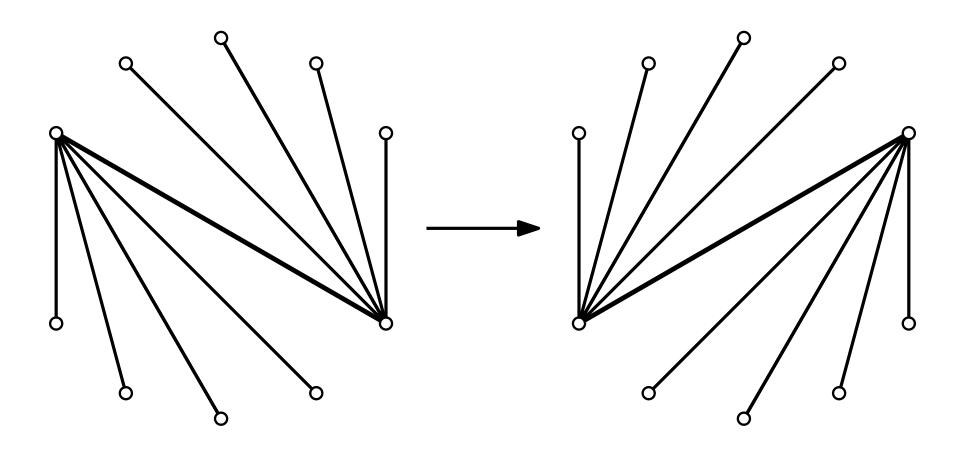


Increase the number of edges incident to v in every flip.

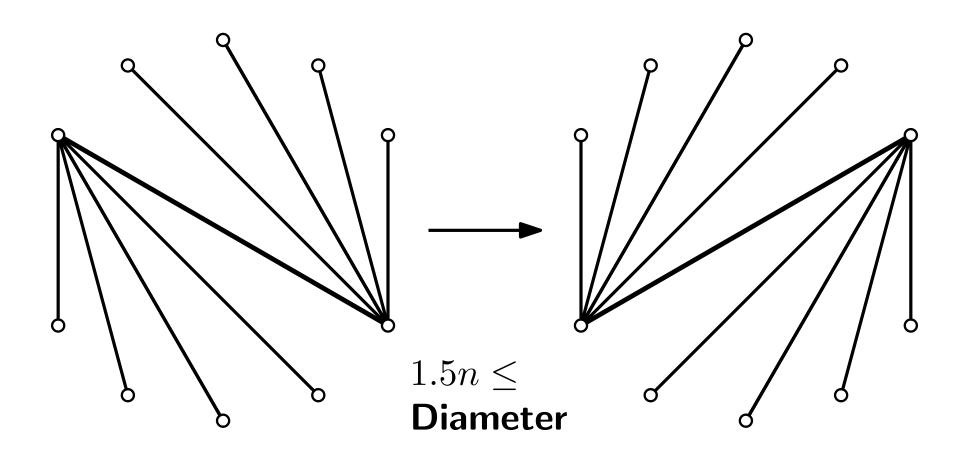


$$\leq 2n-4$$





[Hernando, Hurtado, Márquez, Mora, and Noy, 1999]



[Hernando, Hurtado, Márquez, Mora, and Noy, 1999]

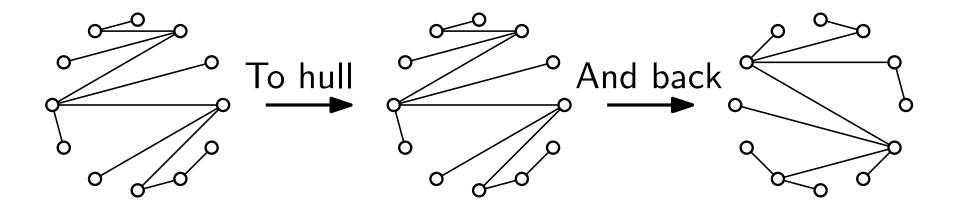
Diameter

Complexity

Attention: From now on: Point set assumed to be in **Convex Position**

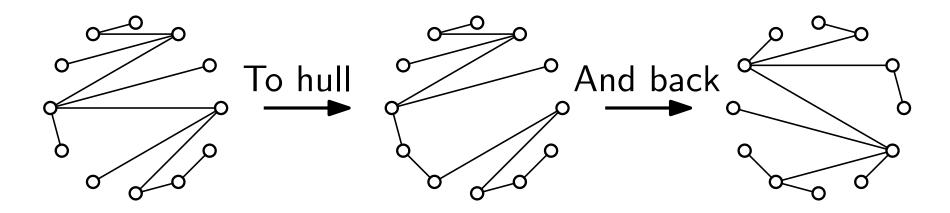
Diameter

Complexity



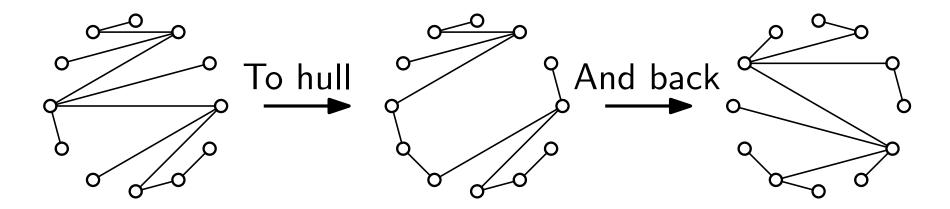
Diameter

Complexity



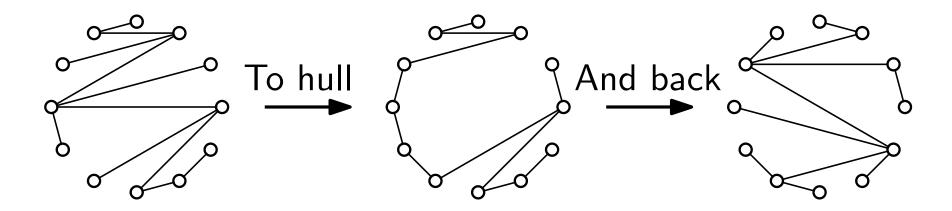
Diameter

Complexity



Diameter

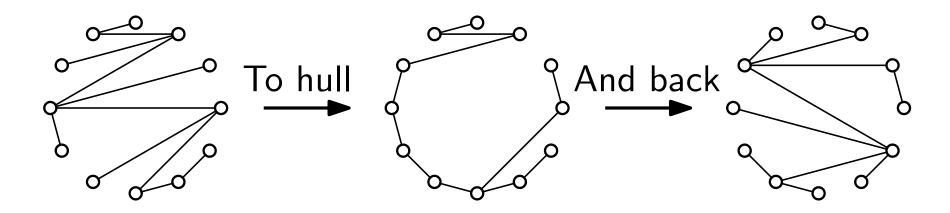
Complexity



Diameter

Complexity

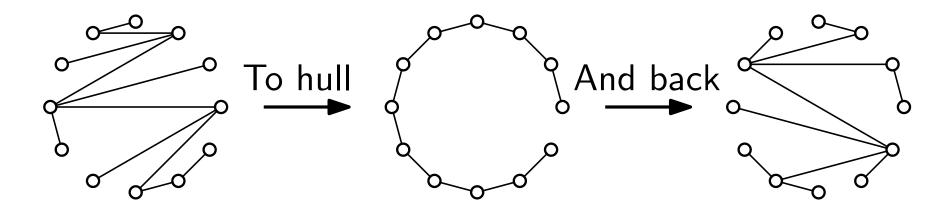
Convex sets \Rightarrow new options for flip sequences



Diameter

Complexity

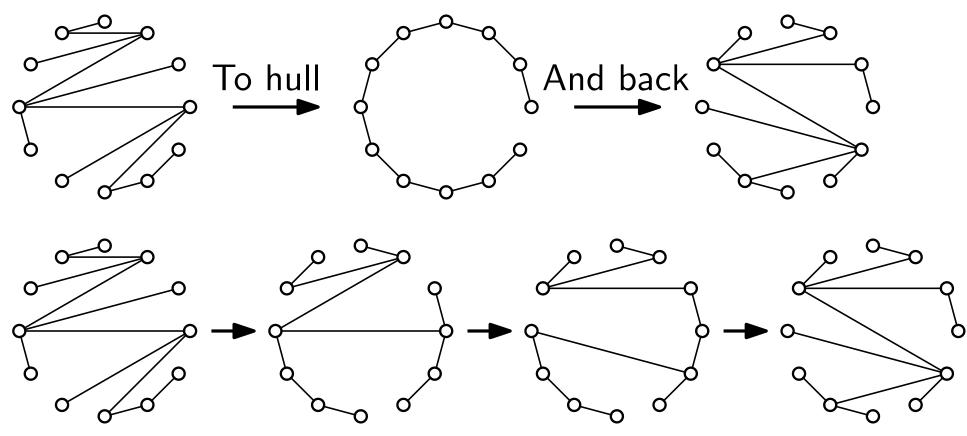
Convex sets \Rightarrow new options for flip sequences



Diameter

Complexity

Convex sets \Rightarrow new options for flip sequences

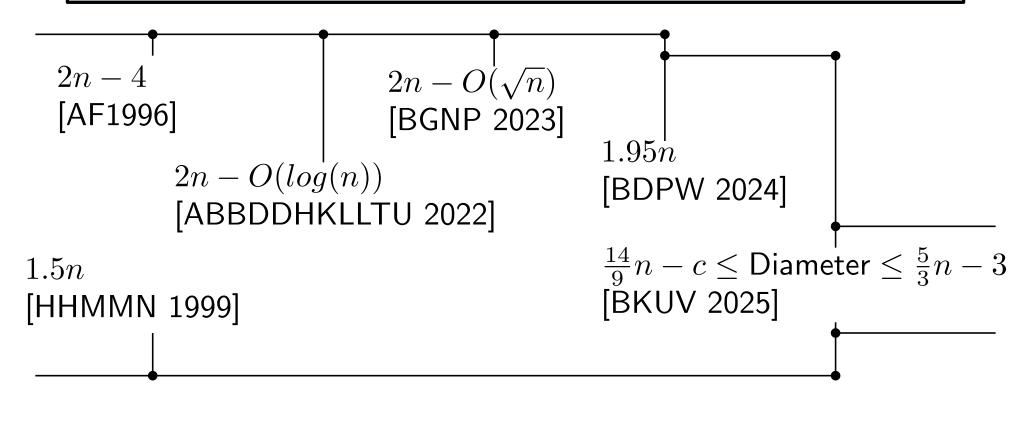


Make some direct flips inbetween

Diameter

Complexity

Progression of maximal number of flips. Who can make the most direct flips?



Pre 2000

2022

2023

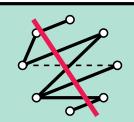
2024

2025

Diameter

Complexity

Progression of maximal number of compatible flips. (no crossing flips)



2n - 4[AF1996]

$$2n - O(\sqrt{n})$$
 [BGNP 2023]

1.5n[HHMMN 1999]

$$\frac{14}{9}n - c$$
 [BKUV 2025]

Pre 2000

2022

2023

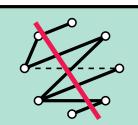
2024

2025

Diameter

Complexity

Progression of maximal number of compatible flips. (no crossing flips)



2n-4[AF1996]

 $2n - O(\sqrt{n})$ [BGNP 2023]

1.5n [HHMMN 1999]

 $\frac{14}{9}n - c$ [BKUV 2025]

Pre 2000

2022

2023

2024

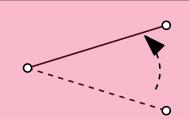
2025

 $\frac{5}{2}n - 2$ New Result

Diameter

Complexity

Progression of maximal number of rotations. (shared vertices)



2n - 4[AF1996]

 $\frac{7}{4}(n-1)$ New Result

1.5n[HHMMN 1999]

 $\frac{14}{9}n - c$ [BKUV 2025]

Pre 2000

2022

2023

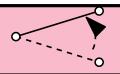
2024

2025

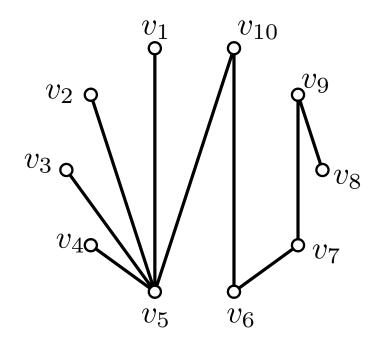
Diameter

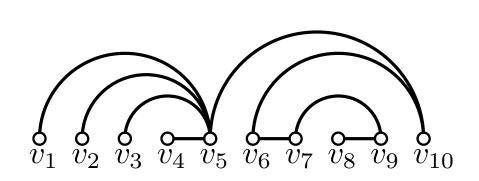
Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.



Step 1 Unfold trees onto a horizontal spine.



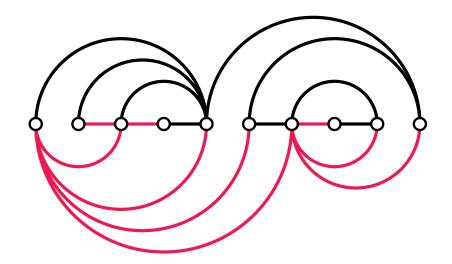


Diameter

Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.

Step 2: Repeat for target tree and draw it on the bottom.

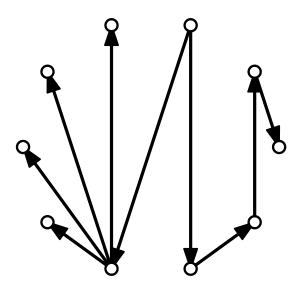


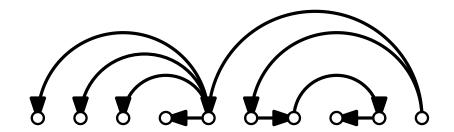
Diameter

Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.

Step 3 Pick a root vertex and orient all edges away from it.

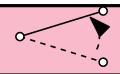




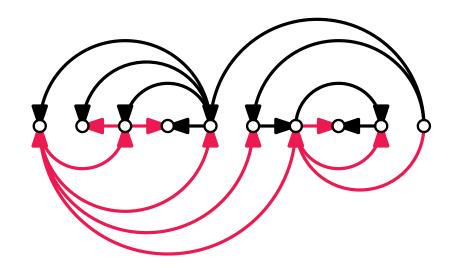
Diameter

Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.



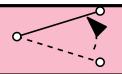
Step 4: Repeat for both trees.



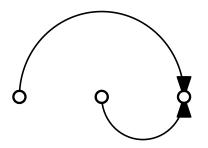
Diameter

Complexity

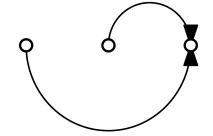
Transforming trees in $\frac{7}{4}(n-1)$ rotations.



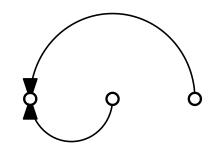
How can pairs of edges look like?



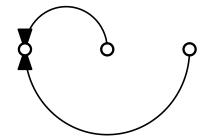
Right-attached above



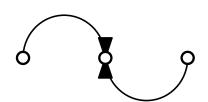
Right-attached below



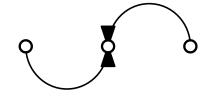
Left-attached above



Left-attached below



Dive



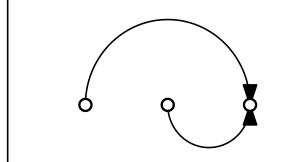
Jump

Diameter

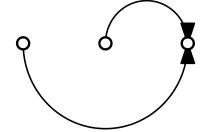
Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.

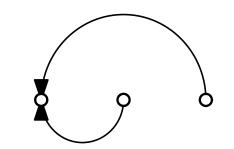
How can pairs of edges look like?



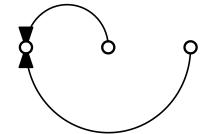
Right-attached above



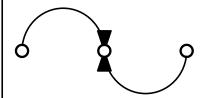
Right-attached below Right



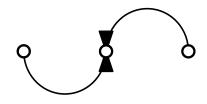
Left-attached above



Left-attached below Left



Dive



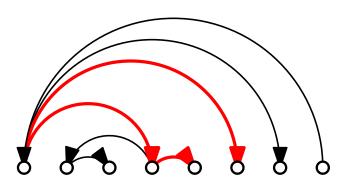
Jump

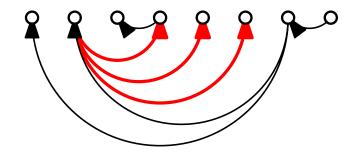
Diameter

Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.

Step 5 (Easy): We can go from one tree to another in 2(n-1)-# Right (resp. # Left) rotations.





Diameter

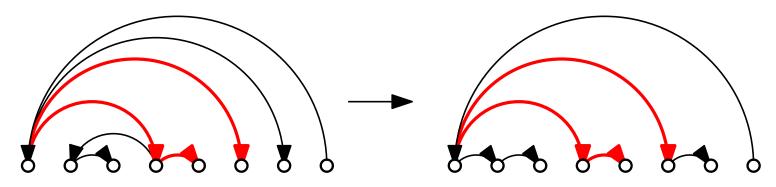
Complexity

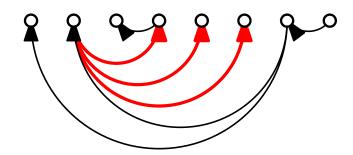
Transforming trees in $\frac{7}{4}(n-1)$ rotations.



Step 5 (Easy): We can go from one tree to another in 2(n-1)-# Right (resp. # Left) rotations.

Step 5.1: Rotate not right-attached edges to convex hull.

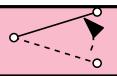




Diameter

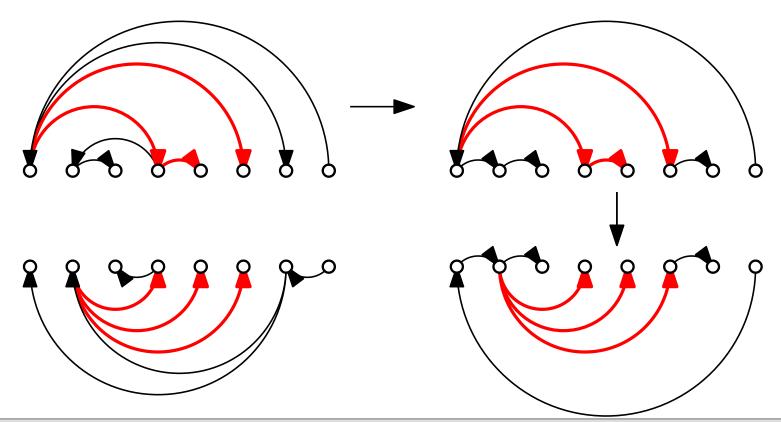
Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.



Step 5 (Easy): We can go from one tree to another in 2(n-1)-# Right (resp. # Left) rotations.

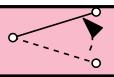
Step 5.2: Rotate right attached edges to target location.



Diameter

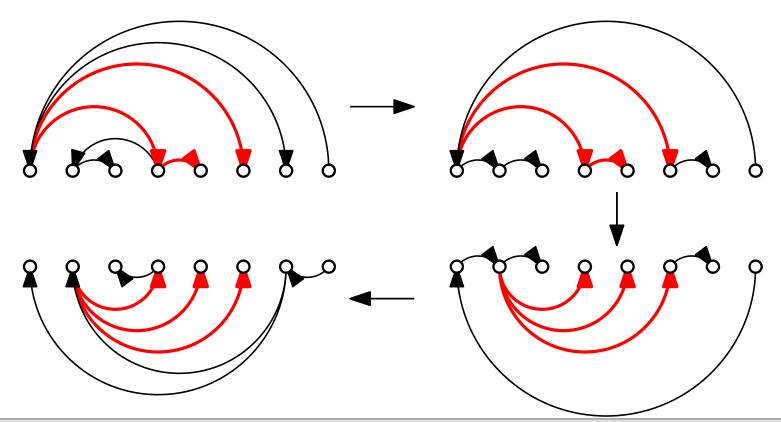
Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.



Step 5 (Easy): We can go from one tree to another in 2(n-1)-# Right (resp. # Left) rotations.

Step 5.3: Rotate remaining edges to target location.



Diameter

Complexity

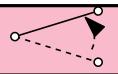
Transforming trees in $\frac{7}{4}(n-1)$ rotations.

Step 6 (Not so easy): We can go from one tree to another in 2(n-1) - # Jump (resp. # Dive) rotations.

Diameter

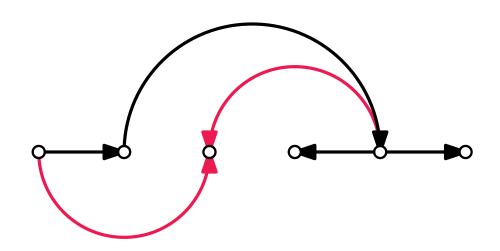
Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.



Step 6 (Not so easy): We can go from one tree to another in 2(n-1) - # Jump (resp. # Dive) rotations.

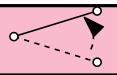
Why not so easy?



Diameter

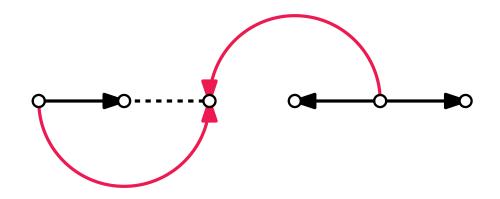
Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.



Step 6 (Not so easy): We can go from one tree to another in 2(n-1) - # Jump (resp. # Dive) rotations.

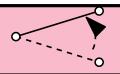
Why not so easy?



Diameter

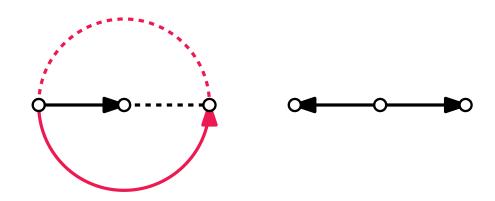
Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.



Step 6 (Not so easy): We can go from one tree to another in 2(n-1) - # Jump (resp. # Dive) rotations.

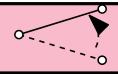
Why not so easy?



Diameter

Complexity

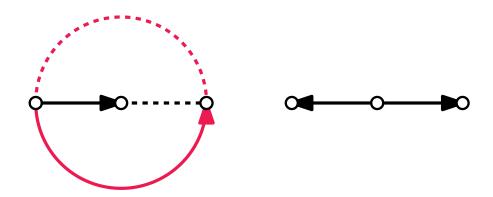
Transforming trees in $\frac{7}{4}(n-1)$ rotations.



Step 6 (Not so easy): We can go from one tree to another in 2(n-1) - # Jump (resp. # Dive) rotations.

Why not so easy?

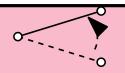
Closes Cycle!

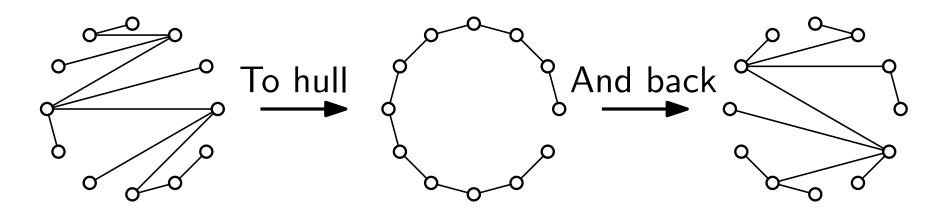


Diameter

Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.

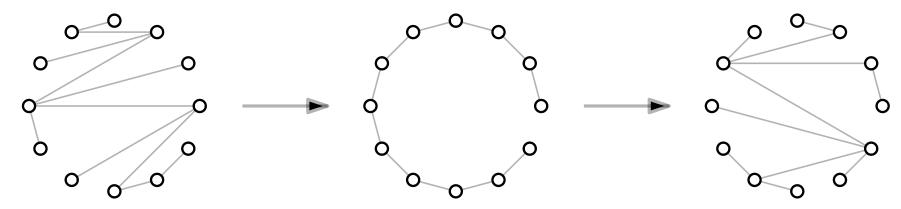




Diameter

Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.

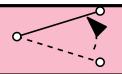


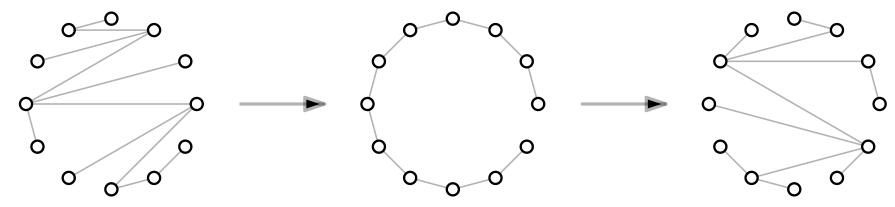
Did not work

Diameter

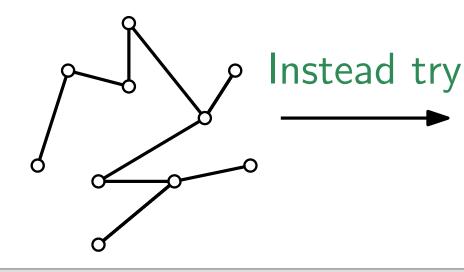
Complexity

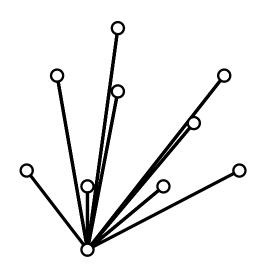
Transforming trees in $\frac{7}{4}(n-1)$ rotations.





Did not work





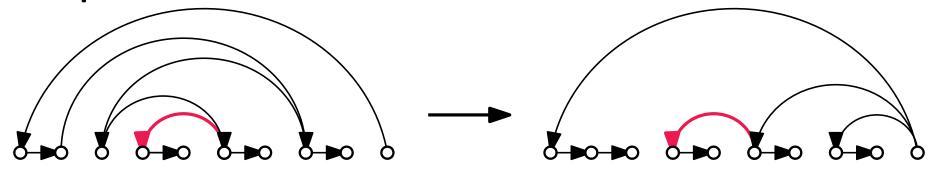
Diameter

Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.

Step 6 (Not so easy): We can go from one tree to another in 2(n-1) - # Jump (resp. # Dive) rotations.

Step 6.1: Rotate into mixture of convex hull and star.



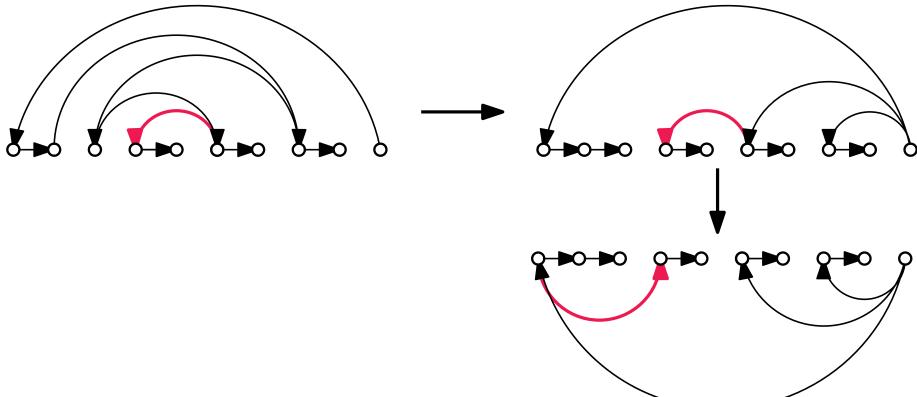
Diameter

Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.

Step 6 (Not so easy): We can go from one tree to another in 2(n-1) - # Jump (resp. # Dive) rotations

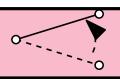
Step 6.2: Rotate Jump edges directly



Diameter

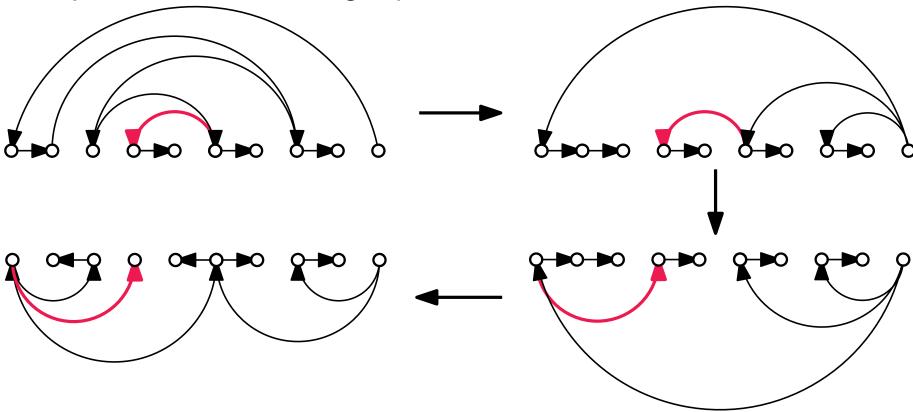
Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.



Step 6 (Not so easy): We can go from one tree to another in 2(n-1) - # Jump (resp. # Dive) rotations

Step 6.3: Rotate to target position



Diameter

Complexity

Transforming trees in $\frac{7}{4}(n-1)$ rotations.

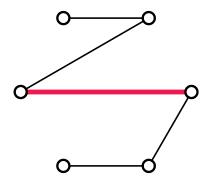
Step 5: We can go from one tree to another in 2(n-1) - # Right (resp. # Left) rotations.

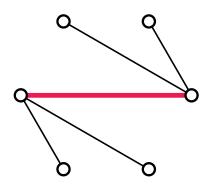
Step 6: We can go from one tree to another in 2(n-1)-# Jump (resp. # Dive) rotations.

Right + # Left + # Jump + # Dive = n-1

Diameter

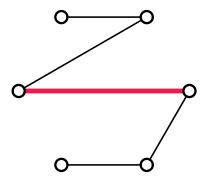
Complexity

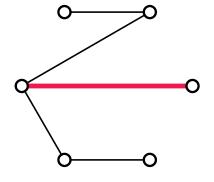


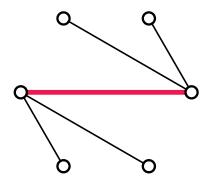


Diameter

Complexity

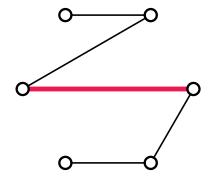


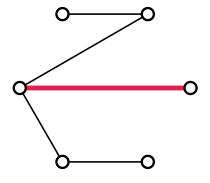


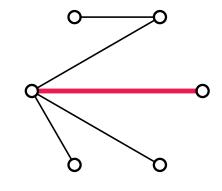


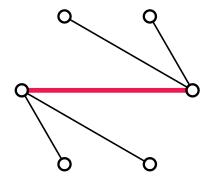
Diameter

Complexity



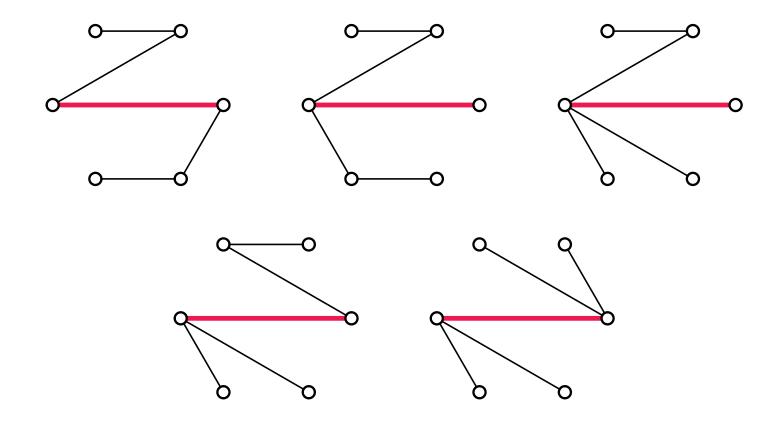






Diameter

Complexity



Diameter

Complexity

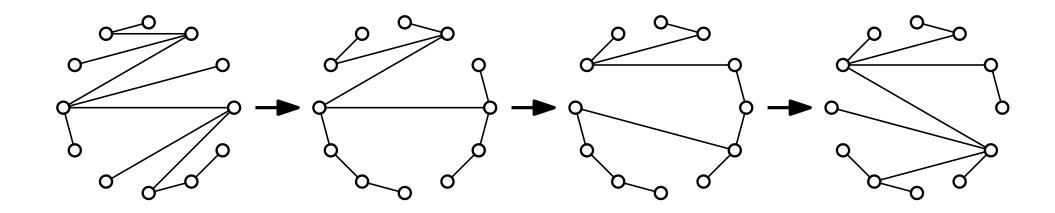
Conjecture 1 (For any type of flip): Keeping happy edges yields optimal flip sequences.

Diameter

Complexity

Conjecture 1 (For any type of flip): Keeping happy edges yields optimal flip sequences.

Conjecture 2 (For any type of flip): Using only intermediate edges from the convex hull yields optimal flip sequences.



Diameter

Complexity

Conjecture 1 (For any type of flip): Keeping happy edges yields optimal flip sequences.

Conjecture 2 (For any type of flip): Using only intermediate edges from the convex hull yields optimal flip sequences.

Conjecture 2 ⇒ Conjecture 1 [ABBDDKLLTU 2022]

Diameter

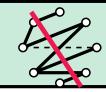
Complexity

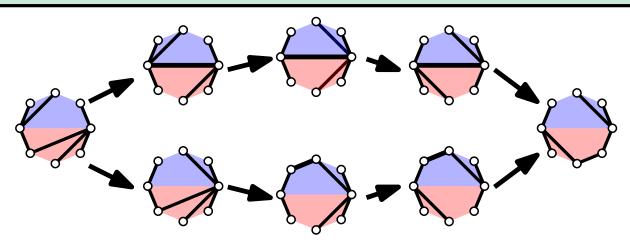
Conjecture 1 (For any type of flip): Keeping happy edges yields optimal flip sequences.

Conjecture 2 (For any type of flip): Using only intermediate edges from the convex hull yields optimal flip sequences.

Conjecture 2 ⇒ Conjecture 1 [ABBDDKLLTU 2022]

Conjecture 2 (and consequently Conjecture 1) holds for **compatible** flip sequences. New Result





Diameter

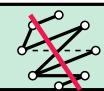
Complexity

Conjecture 1 (For any type of flip): Keeping happy edges yields optimal flip sequences.

Conjecture 2 (For any type of flip): Using only intermediate edges from the convex hull yields optimal flip sequences.

Conjecture 2 ⇒ Conjecture 1 [ABBDDKLLTU 2022]

Conjecture 2 (and consequently Conjecture 1) holds for **compatible** flip sequences. New Result



Application: FPT-Algorithm: The flip distance k is FPT when taking k as the parameter. New Result

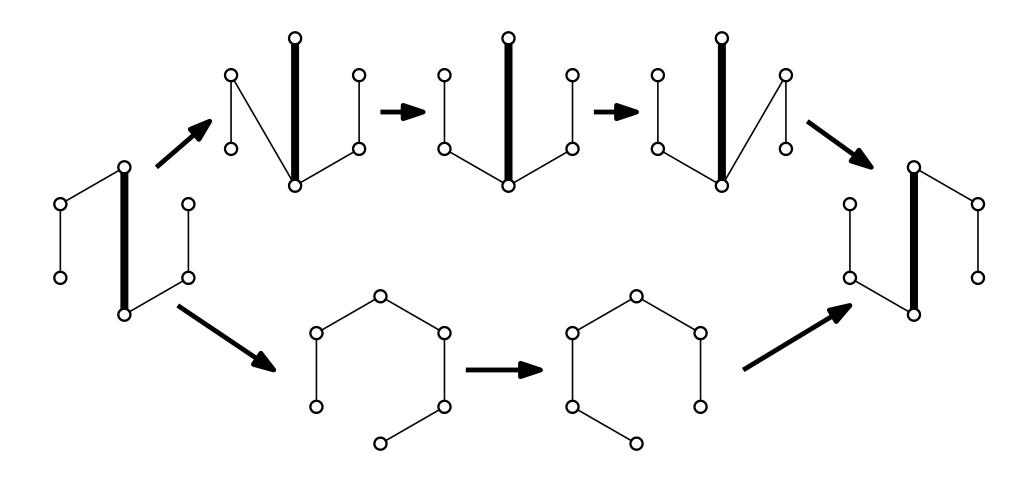
Diameter

Complexity

The happy edge property does not hold for rotations.

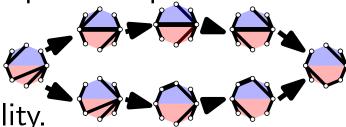
0-----

New Result



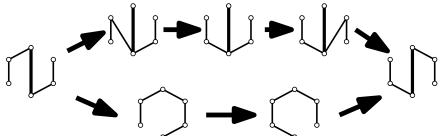
Recap: Constrained flips

The Happy Edge property holds for compatible flips.

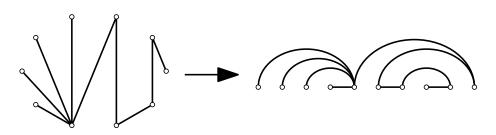


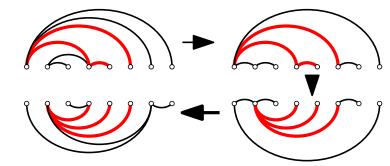
Application: fixed-parameter tractability.

Improved upper bound on length of compatible flip sequences. $\frac{5}{3}n-2$ The Happy Edge property does not hold for rotations.



Improved upper bound on the length of rotation sequences. $\frac{7}{4}(n-1)$

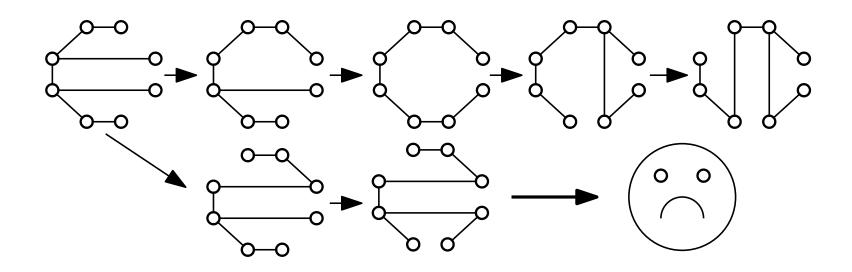




Diameter

Complexity

Attention Happy Edge Property \neq Greedy Flips



[ABBDDKLLTU 2022]