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The problem

Compute a simple drawing of a tree with a prescribed number of
crossings on a given set S of points, while ensuring that its curve
complexity is bounded by a constant
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The problem

Compute a simple drawing of a tree with a prescribed number of
crossings on a given set S of points, while ensuring that its curve
complexity is bounded by a constant

any two edges can share at most one interior point (i.e. a crossing)
and the following configurations are forbidden
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The problem

Compute a simple drawing of a tree with a prescribed number of
crossings on a given set S of points, while ensuring that its curve
complexity is bounded by a constant

when edges are represented as polygonal chains, the curve
complexity is the maximum number of bends per edge
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Thrackles

* The thrackle bound 9(G) of a graph G = (V,E) with m edges is the number of
crossings that a simple drawing of G would have if every edge can cross every
other non-adjacent edge. It is known that

9(G) = (mim+1) — 3 deg(¥)?)
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Piazza, Ringeisen, and Stueckle prove that for every tree T and any integer
0 < x < O(T), T admits a simple drawing with x crossings
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Thrackles

* The thrackle bound 9(G) of a graph G = (V,E) with m edges is the number of
crossings that a simple drawing of G would have if every edge can cross every
other non-adjacent edge. It is known that

1

9(6) =-(m(m+1) — ), _ deg(v)?)
« Agraphis thrackable if it admits a simple drawing with 3(G) edge crossings
* Piazza, Ringeisen, and Stueckle prove that for every tree T and any integer

0 <x < O(T), T admits a simple drawing with x crossings; curve complexity may be
O(n); no fixed location for the vertices



Our contribution

We present and O(n?)-time algorithm to compute a point set
embedding (pse) of a tree T on any set S of points with curve
complexity O(1) and any number of crossings in the range 0 < x < 9(T)
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More precisely:

— Generic pse: curve complexity 5, it reduces to 1 if T is a path;
— RAC pse: curve complexity 9, it reduces to 3 if T is a path;
— Also, the time complexity reduces to O(n log n) if T is a path.




Our contribution

We present and O(n?)-time algorithm to compute a point set
embedding (pse) of a tree T on any set S of points with curve
complexity O(1) and any number of crossings in the range 0 < x < O(T)

More precisely:
— Generic pse: curve complexity 5, it reduces to 1 if T is a path;
— RAC pse: curve complexity 9, it reduces to 3 if T is a path;
— Also, the time complexity reduces to O(n log n) if T is a path.

Key ingredient: efficient computation of a topological circular
layout of a tree with y crossings and O(1) circular spine traversals




Topological circular layout




Topological circular layout

> — circular
Vol _.-"Spine
@ [ ] ¢
U4
7




Topological circular layout

> — circular
O _.-"§pine
@ [ ] ¢ "
U4
7

spine
traversal




Topological circular layout

spine
traversal

If a connected graph with m edges admits a topological circular layout with O(1)
circular spine traversals per edge, then it admits a topology preserving point set
embedding with O(1) curve complexity which can be computed in O(m log m + T(m))

time, where T(m) is the time to compute the circular layout




Circular layouts of trees with a prescribed number of
crossings and at most 2 circular spine traversals per
edge



The tangle-untangle algorithm



The tangle-untangle algorithm

Tangling phase: compute a topological circular layout that reaches
the thrackle bound B(T) and has most two circular spine traversals
per edge



The tangle-untangle algorithm

Tangling phase: compute a topological circular layout that reaches
the thrackle bound B(T) and has most two circular spine traversals

per edge

Untangling phase: reduce the number of crossings in the topological
circular layout one by one without increasing the number of circular

spine traversals per edge



The tangling phase
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The untangling phase



A two-steps procedure

Step 1: Every level of the tree starting from the bottommost is

transformed into a full rainbow configuration by removing crossings
one by one

Step 2: Once every level is in full rainbow configuration the remaining
crossings are removed one by one until no crossing remains



Step 1: making full rainbows

1.a: a level is modified to its rainbow configuration........
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....and then to the full rainbow configuration
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How to make
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with the lower level
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Making
full rainbows

WARNING: added 2
unwanted crossings!!!




Making
full rainbows

Fix: identify subtrees
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The tangling-untangling theorem

Every T admits a topological circular layout with x edge crossings,
X € [0..9(T)], where every edge traverses the spine at most
twice. The circular layout can be computed in O(n3) time




The prune-tangle-untangle algorithm



From cubic to quadratic

* Key obs: every edge e incident to a leaf can cross all other edges
except those incident to its parent, hence e makes at most O(n)
crossings
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* Stepl (Prune): remove enough leaves from T until we get a pruned
tree T whose thrackle number is “far” from the wanted number of
crossings by at most n untangling steps



From cubic to quadratic

* Key obs: every edge e incident to a leaf can cross all other edges
except those incident to its parent, hence e makes at most O(n)
crossings

* Stepl (Prune): remove enough leaves from T until we get a pruned
tree T whose thrackle number is “far” from the wanted number of
crossings by at most n untangling steps

* Step 2 (Draw): apply the tangle-untangle algorithm to T’ so to obtain a
circular layout with x crossings; extend this circular layout to represent
T with no extra crossings and no extra spine traversals



The prune-tangling-untangling theorem




Open Problems

* |s there an o(n?)-time algorithm to compute a topological circular
layout of a tree with prescribed number of crossings and constant
spine traversals?

* Can the curve complexity of RAC point set embeddings of trees with
prescribed crossings be smaller than 97

* Extend the study to graph classes other than trees (e.g. cacti)



Thank you!l!
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