Tangling and Untangling Trees on
Point-sets

Giuseppe (Beppe) Liotta

University of Perugia, ltaly

Joint work with: G. Di Battista, M. Patrignani,
A. Symvonis, |. G. Tollis

The problem

Compute a simple drawing of a tree with a prescribed number of
crossings on a given set S of points, while ensuring that its curve
complexity is bounded by a constant

The problem

Compute a simple drawing of a tree with a prescribed number of
crossings on a given set S of points, while ensuring that its curve
complexity is bounded by a constant

The problem

Compute a simple drawing of a tree with a prescribed number of
crossings on a given set S of points, while ensuring that its curve
complexity is bounded by a constant

any two edges can share at most one interior point (i.e. a crossing)
and the following configurations are forbidden

oK

The problem

Compute a simple drawing of a tree with a prescribed number of
crossings on a given set S of points, while ensuring that its curve
complexity is bounded by a constant

The problem

Compute a simple drawing of a tree with a prescribed number of
crossings on a given set S of points, while ensuring that its curve
complexity is bounded by a constant

when edges are represented as polygonal chains, the curve
complexity is the maximum number of bends per edge

A

curve complexity : 3 curve complexity : 2

Example

Example

O—0)

Y

o/ -/

Example

O—0)

Y

o/ -/

Example

(©

(o)

T: @ @

crossings : 10

o/

-/

Example

T: @ @

N\
N\

crossings.: 10

() (D)
Y Q)
|
A® ®
®

T: @ @

crossings : 10

Example

(c) (p)
=/ -/
A® ®

Example

TNOSG

crossings : 10

A® °
:. ¢ B®
v
o

T: (» ®

Example

crossings : 10

O)——O)——)——06)
-/ -/ _/ U/
\
\\
\\ °
\\\
\\
A‘ . o . '
\
B Di‘
o

O—6)

Example

T: @ @

crossings : 10

o/ -/

Example

T: @ @

crossings : 10

O——G)—0)
-/ O/ _/
v
o
A‘ o
[) o
E B ne

T: @ @

Example

O—6)

crossings : 10

S:

o/ -/

Example

(©)

(o)

L O SO

crossings : 10

o/

-/

Example

(c)

(o)

T: @ @

crossings : 10

Point set embedding
of TonS

Y

&

Example

(c)

(o)

T: @ @

crossings : 10

Point set embedding
of TonS

Y

&

Example

(c)

(o)

T: @ @

crossings : 10

Point set embedding
of TonS

Y

&

Example

(c)

(o)

T: @ @

crossings : 10

Point set embedding
of TonS

Y

&

Example

(c)

(o)

T: @ @

crossings : 10

Point set embedding
of TonS

Y

&

Example

(c)

(o)

T: @ @

crossings : 10

Point set embedding
of TonS

Y

&

Example

(c)

(o)

T: @ @

crossings : 10

Point set embedding
of TonS

Y

&

Example

(c)

(o)

T: @ @

crossings : 10

Point set embedding
of TonS

Y

&

Example

(c)

(o)

T: @ @

crossings : 10

Point set embedding
of TonS

Y

&

Example

(c)

(o)

T: @ @

crossings : 10

Point set embedding
of TonS

Y

&

Example

T: O0—E@O——00——C0@——™0

crossings : 10

Point set embedding
of TonS

Example
T: O—0O0—0O0—0@—0O0—CFE—~0

crossings : 10

S:

Point set embedding

of TonS i
curve complexity : 1

Thrackles

* The thrackle bound 9(G) of a graph G = (V,E) with m edges is the number of
crossings that a simple drawing of G would have if every edge can cross every
other non-adjacent edge. It is known that

9(G) = (mim+1) — 3 deg(¥)?)

Thrackles

* The thrackle bound 9(G) of a graph G = (V,E) with m edges is the number of

crossings that a simple drawing of G would have if every edge can cross every
other non-adjacent edge. It is known that

9(G) = %(m(m +1) =), . deg(v)?)

« Agraphis thrackable if it admits a simple drawing with 3(G) edge crossings

Thrackles

The thrackle bound 9(G) of a graph G = (V,E) with m edges is the number of
crossings that a simple drawing of G would have if every edge can cross every
other non-adjacent edge. It is known that

9(G) = % (mim+1) — Zvev deg(v)?)
A graph is thrackable if it admits a simple drawing with 3(G) edge crossings

Piazza, Ringeisen, and Stueckle prove that for every tree T and any integer
0 < x < O(T), T admits a simple drawing with x crossings

Thrackles

* The thrackle bound 9(G) of a graph G = (V,E) with m edges is the number of
crossings that a simple drawing of G would have if every edge can cross every
other non-adjacent edge. It is known that

1

9(6) =-(m(m+1) —), _ deg(v)?)
« Agraphis thrackable if it admits a simple drawing with 3(G) edge crossings
* Piazza, Ringeisen, and Stueckle prove that for every tree T and any integer

0 <x < O(T), T admits a simple drawing with x crossings; curve complexity may be
O(n)

Thrackles

* The thrackle bound 9(G) of a graph G = (V,E) with m edges is the number of
crossings that a simple drawing of G would have if every edge can cross every
other non-adjacent edge. It is known that

1

9(6) =-(m(m+1) —), _ deg(v)?)
« Agraphis thrackable if it admits a simple drawing with 3(G) edge crossings
* Piazza, Ringeisen, and Stueckle prove that for every tree T and any integer

0 <x < O(T), T admits a simple drawing with x crossings; curve complexity may be
O(n); no fixed location for the vertices

Our contribution

We present and O(n?)-time algorithm to compute a point set
embedding (pse) of a tree T on any set S of points with curve
complexity O(1) and any number of crossings in the range 0 < x < 9(T)

Our contribution

We present and O(n?)-time algorithm to compute a point set
embedding (pse) of a tree T on any set S of points with curve
complexity O(1) and any number of crossings in the range 0 < x < O(T)

More precisely:

— Generic pse: curve complexity 5, it reduces to 1 if T is a path;
— RAC pse: curve complexity 9, it reduces to 3 if T is a path;
— Also, the time complexity reduces to O(n log n) if T is a path.

Our contribution

We present and O(n?)-time algorithm to compute a point set
embedding (pse) of a tree T on any set S of points with curve
complexity O(1) and any number of crossings in the range 0 < x < O(T)

More precisely:
— Generic pse: curve complexity 5, it reduces to 1 if T is a path;
— RAC pse: curve complexity 9, it reduces to 3 if T is a path;
— Also, the time complexity reduces to O(n log n) if T is a path.

Key ingredient: efficient computation of a topological circular
layout of a tree with y crossings and O(1) circular spine traversals

Topological circular layout

Topological circular layout

> — circular
Vol _.-"Spine
@ [] ¢
U4
7

Topological circular layout

> — circular
O _.-"§pine
@ [] ¢ "
U4
7

spine
traversal

Topological circular layout

spine
traversal

If a connected graph with m edges admits a topological circular layout with O(1)
circular spine traversals per edge, then it admits a topology preserving point set
embedding with O(1) curve complexity which can be computed in O(m log m + T(m))

time, where T(m) is the time to compute the circular layout

Circular layouts of trees with a prescribed number of
crossings and at most 2 circular spine traversals per
edge

The tangle-untangle algorithm

The tangle-untangle algorithm

Tangling phase: compute a topological circular layout that reaches
the thrackle bound B(T) and has most two circular spine traversals
per edge

The tangle-untangle algorithm

Tangling phase: compute a topological circular layout that reaches
the thrackle bound B(T) and has most two circular spine traversals

per edge

Untangling phase: reduce the number of crossings in the topological
circular layout one by one without increasing the number of circular

spine traversals per edge

The tangling phase

HOW tO tangle level 0 \ second, move

e - externally and

e 1 counter-clockwise
Ve ~
Ve
Ve
level O / _ \\
/ thirg, move \

)/ firgt,oppusite N

level 1 / intefnalilyeand \
,' clockwise “
I \
I \
I
| |
, level 1 I
\ I
\ /

\ /

\ /

\ /
\ /
2 /
\ 7/
N /7
~ Ve
~ 7
3 P d

level O

How to tangle

level O

How to tangle

level 2

level 3

How to tangle

level 2

level 3

How to tangle

The untangling phase

A two-steps procedure

Step 1: Every level of the tree starting from the bottommost is

transformed into a full rainbow configuration by removing crossings
one by one

Step 2: Once every level is in full rainbow configuration the remaining
crossings are removed one by one until no crossing remains

Step 1: making full rainbows

1.a: a level is modified to its rainbow configuration........

Step 1: making full rainbows

....and then to the full rainbow configuration

’—_—_~
LS
- ~

How to make
rainbows

How to make
rainbows

Inductive hypothesis: for
level k, all levels larger than
k are in full rainbow

How to make
rainbows

Inductive hypothesis: for
level k, all levels larger than
k are in full rainbow

How to make
rainbows

Inductive hypothesis: for
level k, all levels larger than
k are in full rainbow

How to make
rainbows

Inductive hypothesis: for
level k, all levels larger than
k are in full rainbow

How to make
rainbows

Inductive hypothesis: for
level k, all levels larger than
k are in full rainbow

How to make
rainbows

How to make
rainbows

How to make
rainbows

How to make
rainbows

How to make
rainbows

How to make
rainbows

How to make

rainbows

How to make

rainbows

How to make
rainbows

How to make

rainbows

How to make
rainbows

How to make
rainbows

How to make
rainbows

WARNING: removed 3
crossings instead of 1 !!!

How to make
rainbows

FIX: reinsert 2 crossings
with the lower level

How to make
rainbows

...remove one of them....

How to make
rainbows

...remove the other one....

How to make
rainbows

How to make
rainbows

How to make
rainbows

How to make
rainbows

How to make
rainbows

How to make
rainbows

How to make
rainbows

WARNING: removed 3
crossings instead of 1 !!!

How to make
rainbows

FIX: reinsert 2 crossings
with the lower level

How to make
rainbows

...remove one of them...

How to make
rainbows

...remove the other one...

How to make
rainbows

How to make
rainbows

How to make
rainbows

How to make

rainbows

Making
full rainbows

Making
full rainbows

Making
full rainbows

Making
full rainbows

Making
full rainbows

WARNING: added 2
unwanted crossings!!!

Making
full rainbows

Fix: identify subtrees

Making
full rainbows

...and swap them...

Making
full rainbows

...identify subtrees...

Making
full rainbows

...and swap them...

Making
full rainbows

Making
full rainbows

Making
full rainbows

Making
full rainbows

Making
full rainbows

Making
full rainbows

Making
full rainbows

Making
full rainbows

Making
full rainbows

Making
full rainbows

Making
full rainbows

Making
full rainbows

..... Once every level
: : ©
is a full rainbow.... &

Q

\

é@
=
=

~ (2l KX\@%

M@@]@]

O

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

..... Once every level
is a full rainbow....

The tangling-untangling theorem

Every T admits a topological circular layout with x edge crossings,
X € [0..9(T)], where every edge traverses the spine at most
twice. The circular layout can be computed in O(n3) time

The prune-tangle-untangle algorithm

From cubic to quadratic

* Key obs: every edge e incident to a leaf can cross all other edges
except those incident to its parent, hence e makes at most O(n)
crossings

From cubic to quadratic

* Key obs: every edge e incident to a leaf can cross all other edges
except those incident to its parent, hence e makes at most O(n)
crossings

* Stepl (Prune): remove enough leaves from T until we get a pruned
tree T whose thrackle number is “far” from the wanted number of
crossings by at most n untangling steps

From cubic to quadratic

* Key obs: every edge e incident to a leaf can cross all other edges
except those incident to its parent, hence e makes at most O(n)
crossings

* Stepl (Prune): remove enough leaves from T until we get a pruned
tree T whose thrackle number is “far” from the wanted number of
crossings by at most n untangling steps

* Step 2 (Draw): apply the tangle-untangle algorithm to T’ so to obtain a
circular layout with x crossings; extend this circular layout to represent
T with no extra crossings and no extra spine traversals

The prune-tangling-untangling theorem

Open Problems

* |s there an o(n?)-time algorithm to compute a topological circular
layout of a tree with prescribed number of crossings and constant
spine traversals?

* Can the curve complexity of RAC point set embeddings of trees with
prescribed crossings be smaller than 97

* Extend the study to graph classes other than trees (e.g. cacti)

Thank you!l!

	Slide 1: Tangling and Untangling Trees on Point-sets
	Slide 2: The problem
	Slide 3: The problem
	Slide 4: The problem
	Slide 5: The problem
	Slide 6: The problem
	Slide 7: Example
	Slide 8: Example
	Slide 9: Example
	Slide 10: Example
	Slide 11: Example
	Slide 12: Example
	Slide 13: Example
	Slide 14: Example
	Slide 15: Example
	Slide 16: Example
	Slide 17: Example
	Slide 18: Example
	Slide 19: Example
	Slide 20: Example
	Slide 21: Example
	Slide 22: Example
	Slide 23: Example
	Slide 24: Example
	Slide 25: Example
	Slide 26: Example
	Slide 27: Example
	Slide 28: Example
	Slide 29: Example
	Slide 30: Example
	Slide 31: Thrackles
	Slide 32: Thrackles
	Slide 33: Thrackles
	Slide 34: Thrackles
	Slide 35: Thrackles
	Slide 36: Our contribution
	Slide 37: Our contribution
	Slide 38: Our contribution
	Slide 39: Topological circular layout
	Slide 40: Topological circular layout
	Slide 41: Topological circular layout
	Slide 42: Topological circular layout
	Slide 43: Circular layouts of trees with a prescribed number of crossings and at most 2 circular spine traversals per edge
	Slide 44: The tangle-untangle algorithm
	Slide 45: The tangle-untangle algorithm
	Slide 46: The tangle-untangle algorithm
	Slide 47: The tangling phase
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: The untangling phase
	Slide 54: A two-steps procedure
	Slide 55: Step 1: making full rainbows
	Slide 56: Step 1: making full rainbows
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141: The tangling-untangling theorem
	Slide 142: The prune-tangle-untangle algorithm
	Slide 143: From cubic to quadratic
	Slide 144: From cubic to quadratic
	Slide 145: From cubic to quadratic
	Slide 146: The prune-tangling-untangling theorem
	Slide 147: Open Problems
	Slide 148: Thank you!!!

