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Introduction

Def (Harborth, 1981): A matchstick graph is a plane graph that
allows plane embedding with straight edges of equal length.
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Introduction

Theorem (Harborth - special case, 1974)
If the unit distance is also the smallest distance among the vertices, then
the maximum number of edges for a matchstick graph on n vertices is⌊
3n −

√
12n − 3

⌋
.

Conjecture (Harborth, 1981)
The maximum number of edges for a matchstick graph on n vertices is⌊
3n −

√
12n − 3

⌋
.

(Proven by Lavollée and Swanepoel (2023)).
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Introduction

Def (Gehér and Tóth, 2023): A 1-planar unit distance graph is a
graph that allows a drawing in the plane in which all edges are
straight-line segments of equal length and every edge crosses at most
one other edge.

Notation:

u0(n). . . maximum number of edges of a matchstick graph on n
vertices
u1(n). . . maximum number of edges of a 1-planar unit distance graph
on n vertices
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What was known

Theorem (Lavollée and Swanepoel, 2023)
For the maximum number of edges of a matchstick graph u1(n) we have

u0(n) =
⌊
3n −

√
12n − 3

⌋
.

Theorem (Gehér and Tóth, 2023)
For the maximum number of edges of a 1-planar unit distance graph u1(n)
we have ⌊

3n −
√

12n − 3
⌋
≤ u1(n) ≤ 3n −

4
√
n

10
.

Question: (Graph Drawing 2024, Gehér and Tóth)
Is it true that u0(n) = u1(n)?
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Our results

31 vertices, 74 edges (u0(31) = 73)
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Our results

Theorem 1
For every n ≥ 16135, u1(n) > u0(n).

Theorem 2

For any constant α < 4
√

1
3 = .7598 . . . and for every n sufficiently large

(with respect to α), u1(n)− u0(n) ≥ α 4
√
n.
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The basic construction

Notation:
Denote by Tn a graph on 2n + 1 vertices and 4n − 1 edges isometric
to the set of points
{[0 + ℓ, 0], [12 +m,

√
3

2 : ℓ ∈ {0, . . . , n},m ∈ {0, . . . , n − 1}]} where
two points are connected if their distance is exactly 1. This graph will
be called a path of n triangles.

Denote by F the graph with vertices isomorphic to the points with
coordinates (0, 0), (1, 0), (0, 1), (1, 1), (1

2 ,
√

3
2 ), (1

2 , 1 +
√

3
2 ).
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The basic construction

The resulting graph is denoted by Gt,k,a with the parameters:
k: the number of k + 1 copies of the elementary building block F
concatenated in a row,
t: the number of such rows stacked on top of each other (to be
precise, half of them stacked on top of each other, and the other half
added below them by a vertical flip),
a: the number of paths of triangles stacked above (and below) the
rows of F ’s,

|V (Gt,k,a)| = 2ka− a2 + a+ 4 + 3k + 3t + 2kt,

|E (Gt,k,a)| = 6ka− 3a2 + a+ 5 + 7k + 6t + 6kt.

Choose k=2a+t+1
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The basic construction

The resulting graph is denoted by Ht,a with the parameters:
t: the number of rows of F ’s stacked on top of each other (to be
precise, half of them stacked on top of each other, and the other half
added below them by a vertical flip),
a: the number of paths of triangles stacked above (and below) the
rows of F ’s,

|V (Ht,a)| = 3a2 + 9a+ 6at + 7 + 8t + 2t2,

|E (Ht,a)| = 9a2 + 21a+ 18at + 12 + 19t + 6t2.
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The basic construction

Proposition
For every even positive integer t and every a ≥ t2,
|E (Ht,a)| − u0(|V (Ht,a)|) ≥ t.

Proof:
For a = t2 it holds |E (Ht,t2)| − u0(|V (Ht,t2)|) > t − 1.
For every a > t2 denote
ft(x) =

√
12(3x2 + 9x + 6xt + 7 + 8t + 2t2)− 3 − (6x + 5t + 9) for

a real variable x .
It holds:

|E (Ht,a)| − u0(|V (Ht,a)|) ≥ ft(a) for every positive integer a,
ft(x) is increasing for every x > 0 and t > 0.

Therefore |E (Ht,a)| − u0(|V (Ht,a)|) ≥ t.
□
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The basic construction

Proposition
For every even positive integer t and every a ≥ t2,
|E (Ht,a)| − u0(|V (Ht,a)|) ≥ t.

Corollary
For every integer t, there are infinitely many values n such that
u1(n)− u0(n) ≥ t. Hence lim supn→∞(u1(n)− u0(n)) = ∞.

13 / 21



Proof of Theorem 1

Theorem 1
For every n ≥ 16135, u1(n) > u0(n).

Proof:
Fix an even integer t, t ≥ 8 and examine the graphs Ht,a and Ht,a+1.
For n ∈ {|V (Ht,a)|, |V (Ht,a+1)|} construct a graph Lt,n:
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Proof of Theorem 1

Theorem 1
For every n ≥ 16135, u1(n) > u0(n).

The number of vertices that separate Ht,a from Ht,a+1 is

|V (Ht,a+1)| − |V (Ht,a)| = 3a2 + 15a+ 19 + 6at + 14t + 2t2−
− (3a2 + 9a+ 6at + 7 + 8t + 2t2) = 6a+ 6t + 12.

Suppose further that a ≥ t2. Attaching paths of triangles Ta+1+t ,
Ta+t and Ta+t−1 to the upper horizontal side of Gt,a, and Ta+1+t ,
Ta+t , Ta+t−1 and Ta+t−2 to the bottom horizontal side of Ht,a. This
operation adds:

2(a+ 1 + t + (a+ t) + (a+ t − 1)) + (a+ t − 2) = 7a− 2 + 7t =
= 6a+ a− 2 + 6t + t ≥ 6a− 2 + 6t + 3t > 6a+ 6t + 13

vertices, which is more than enough.
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Proof of Theorem 1

Theorem 1
For every n ≥ 16135, u1(n) > u0(n).

A careful computation shows that

|E (Lt,n)| − u0(n) ≥ |E (Ht,a)| − u0(|V (Ht,a)|)− 7 ≥ t − 7 ≥ 1.

Substituting the smallest values for a and t, which means t = 8 and
a = 64, we get

|V (H8,64)| = 16135.

□
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Proof of Theorem 2

Theorem 2

For any constant α < 4
√

1
3 = .7598 . . . and for every n sufficiently large

(with respect to α), u1(n)− u0(n) ≥ α 4
√
n.

Proof:
Denote n(t, a) := |V (Ht,a)| and extend the function
n(t, t2) = 3t4 + 6t3 + 11t2 + 8t + 7 to all positive real values of t.
Then t can be expressed as

t =

√√
n

3
− 5

9
− 39

36
− 1

2
.

It follows that t ≥ β 4
√
n holds for sufficiently large n (and hence also

for sufficiently large t), as long as β < 4
√

1
3 .
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Proof of Theorem 2

Theorem 2

For any constant α < 4
√

1
3 = .7598 . . . and for every n sufficiently large

(with respect to α), u1(n)− u0(n) ≥ α 4
√
n.

Let t0 ≥ 8 be an even integer large enough, so that

t0 − 7 ≥ α

β
(t0 + 2) and t0 ≥ β 4

√
n(t0, t20 ).

(Since the involved functions are monotone, it follows that

t − 7 ≥ α

β
(t + 2) and t ≥ β 4

√
n(t, t2)

hold for every t ≥ t0.)
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Proof of Theorem 2

Theorem 2

For any constant α < 4
√

1
3 = .7598 . . . and for every n sufficiently large

(with respect to α), u1(n)− u0(n) ≥ α 4
√
n.

For every n ≥ n(t0, t
2
0 ), there is an even integer t such that

n(t, t2) ≤ n < n(t + 2, (t + 2)2). Then, using this t, it follows from
Theorem 1, that

u1(n)− u0(n) ≥ t − 7 ≥ α

β
(t + 2) ≥ α

β
β 4
√
n(t + 2, (t + 2)2) ≥ α 4

√
n.

□
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Open problems

Problem 1.
Does there exist a planar graph which has a 1-planar unit distance drawing
and which has more edges than any matchstick graph on the same number
of vertices?

Define u0.5(n) as the maximum number of
edges of an n-vertex graph that allows for
1-planar unit distance drawings in which only
vertical and horizontal edges cross.

Problem 2.
Prove an upper bound on u0.5(n) better than 3n − c 4

√
n.

Problem 3.
Is u0.5(n) < u1(n) for some n? For infinitely many n’s?
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Thank you for your attention!
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