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Introduction

o Def (Harborth, 1981): A matchstick graph is a plane graph that
allows plane embedding with straight edges of equal length.
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Introduction

Theorem (Harborth - special case, 1974)

If the unit distance is also the smallest distance among the vertices, then
the maximum number of edges for a matchstick graph on n vertices is

30— vI2n—3).

Conjecture (Harborth, 1981)

The maximum number of edges for a matchstick graph on n vertices is
|3n —v/12n 3.

(Proven by Lavollée and Swanepoel (2023)).
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Introduction

o Def (Gehér and Téth, 2023): A 1-planar unit distance graph is a
graph that allows a drawing in the plane in which all edges are
straight-line segments of equal length and every edge crosses at most
one other edge.
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Introduction

o Def (Gehér and Téth, 2023): A 1-planar unit distance graph is a
graph that allows a drawing in the plane in which all edges are
straight-line segments of equal length and every edge crosses at most
one other edge.

o Notation:
e up(n)... maximum number of edges of a matchstick graph on n

vertices
o uy(n)... maximum number of edges of a 1-planar unit distance graph

on n vertices
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What was known

Theorem (Lavollée and Swanepoel, 2023)

For the maximum number of edges of a matchstick graph wu1(n) we have

up(n) = L3n - \/WJ .

Theorem (Gehér and Téth, 2023)

For the maximum number of edges of a 1-planar unit distance graph uy(n)
we have

[3n— MJ < wu(n) <3n— @

10
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What was known

Theorem (Lavollée and Swanepoel, 2023)

For the maximum number of edges of a matchstick graph wu1(n) we have

up(n) = L3n - \/WJ .

Theorem (Gehér and Téth, 2023)

For the maximum number of edges of a 1-planar unit distance graph uy(n)
we have

[3n— MJ < wu(n) <3n— 41£0n

Question: (Graph Drawing 2024, Gehér and T6th)

Is it true that up(n) = u1(n)?
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Our results
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Our results

31 vertices, 74 edges (up(31) = 73)
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Our results

For every n > 16135, ui(n) > ug(n).
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Our results

For every n > 16135, ui(n) > ug(n).

= .7598... and for every n sufficiently large

For any constant o < {‘/g
(with respect to ), ui(n) — up(n) > a/n.
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The basic construction

Notation:
@ Denote by T, a graph on 2n+ 1 vertices and 4n — 1 edges isometric
to the set of points
{[0+€,O],[%+m,§ :£€{0,...,n},me{0,...,n— 1}]} where
two points are connected if their distance is exactly 1. This graph will
be called a path of n triangles.

~
n+1 vertices
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The basic construction

Notation:

@ Denote by T, a graph on 2n+ 1 vertices and 4n — 1 edges isometric

to the set of points

{[0+€,O],[%+m,§ :0e€{0,...,n},me{0,...,n—1}]} where

two points are connected if their distance is exactly 1. This graph will

be called a path of n triangles.

@ Denote by F the graph with vertices isomorphic to the points with
). (5,14 %),

coordinates (0,0),(1,0),(0,1),(1,1),(

~
n+1 vertices
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The basic construction
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The basic construction
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The basic construction

The resulting graph is denoted by G;  , with the parameters:

@ k: the number of k 4+ 1 copies of the elementary building block F
concatenated in a row,

@ t: the number of such rows stacked on top of each other (to be
precise, half of them stacked on top of each other, and the other half
added below them by a vertical flip),

@ a: the number of paths of triangles stacked above (and below) the
rows of F's,
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The basic construction

The resulting graph is denoted by G;  , with the parameters:

@ k: the number of k 4+ 1 copies of the elementary building block F
concatenated in a row,

@ t: the number of such rows stacked on top of each other (to be
precise, half of them stacked on top of each other, and the other half
added below them by a vertical flip),

@ a: the number of paths of triangles stacked above (and below) the
rows of F's,

\V(Gtka)| =2ka— 2> + a+ 4+ 3k + 3t + 2kt,
|E(Gt k)| = 6ka —3a% + a+ 5+ Tk + 6t + 6kt.
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The basic construction

The resulting graph is denoted by G;  , with the parameters:

@ k: the number of k 4+ 1 copies of the elementary building block F
concatenated in a row,

@ t: the number of such rows stacked on top of each other (to be
precise, half of them stacked on top of each other, and the other half
added below them by a vertical flip),

@ a: the number of paths of triangles stacked above (and below) the
rows of F's,

\V(Gtka)| =2ka— 2> + a+ 4+ 3k + 3t + 2kt,
|E(Gt k)| = 6ka —3a% + a+ 5+ Tk + 6t + 6kt.

Choose k=2a+t+1
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The basic construction

The resulting graph is denoted by H; , with the parameters:

@ t: the number of rows of F's stacked on top of each other (to be
precise, half of them stacked on top of each other, and the other half
added below them by a vertical flip),

@ a: the number of paths of triangles stacked above (and below) the
rows of F's,

|V(Hya)| = 3a% + 9a + 6at + 7 + 8t + 2t2,
|E(Hea)| = 922 + 21a + 18at + 12 + 19t + 6t2.
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The basic construction

Proposition

For every even positive integer t and every a > t,
|E(Ht,a)| — wo(|V(Hea)l) = t.

Proof:
For a = t? it holds |E(H, )| — uo(|V(Hs2)]) > t — 1.
For every a > t2 denote
fe(x) = \/12(3x2 + 9x + 6xt + 7 + 8t + 2t2) — 3 — (6x + 5t + 9) for
a real variable x.

It holds:
o |E(H:,a)| — uo(|V(Hea)|) > fi(a) for every positive integer a,
o fi(x) is increasing for every x > 0 and t > 0.

Therefore |E(Hy,a)| — uo(|V(He,a)|) > t.
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The basic construction

Proposition

For every even positive integer t and every a > t,
|E(Ht,a)| — wo(|V(Hea)l) = t.

For every integer t, there are infinitely many values n such that
u1(n) — up(n) > t. Hence limsup,,_,(u1(n) — upg(n)) = oc.
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Proof of Theorem 1

For every n > 16135, ui(n) > ug(n).
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Proof of Theorem 1

For every n > 16135, ui(n) > ug(n).

Proof:
Fix an even integer t, t > 8 and examine the graphs H; 5 and H; ,11.
For n € {|V(H¢,a)l|,|V(Hea+1)|} construct a graph Ly
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Proof of Theorem 1

For every n > 16135, u1(n) > up(n).

The number of vertices that separate H; , from Hy 541 is

\V(H¢a11)| — |V(Hra)| = 3a% + 152 + 19 + 6at + 14t 4 2t°—
— (32° +9a + 6at 4 7 + 8t + 2t%) = 6a + 6t + 12.
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Proof of Theorem 1

For every n > 16135, u1(n) > up(n).

The number of vertices that separate H; , from Hy 541 is

\V(H¢a11)| — |V(Hra)| = 3a% + 152 + 19 + 6at + 14t 4 2t°—
— (32° +9a + 6at 4 7 + 8t + 2t%) = 6a + 6t + 12.

Suppose further that a > t2. Attaching paths of triangles T, 14+,
Tatt and T,y¢—1 to the upper horizontal side of G; 5, and T,y14¢,

Tat+t, Tatt—1 and T,y¢—5 to the bottom horizontal side of H; ;. This
operation adds:

2@+ 1+t+(a+t)+(a+t—1)+(a+t—2)=7a—2+4+T7t=
=6a+a—2+4+6t+t>6a—2+6t+3t>6a+6t+13

vertices, which is more than enough.
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Proof of Theorem 1

For every n > 16135, u1(n) > up(n).

A careful computation shows that

|E(Lt,n)| = uo(n) = [E(Hea)| — wo(|V(Hea)) =72t -7 > 1
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Proof of Theorem 1

For every n > 16135, u1(n) > up(n).

A careful computation shows that

|E(Lt,n)| = uo(n) = [E(Hea)| — wo(|V(Hea)) =72t -7 > 1

Substituting the smallest values for a and t, which means t = 8 and
a = 64, we get
|V (Hg64)| = 16135.
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Proof of Theorem 2

For any constant a < </§ = .7598. .. and for every n sufficiently large
(with respect to ), ui(n) — up(n) > a/n.
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Proof of Theorem 2

For any constant a < </g = .7598. .. and for every n sufficiently large
(with respect to ), ui(n) — up(n) > a/n.

Proof:

Denote n(t,a) := |V/(H,,)| and extend the function
n(t, t2) = 3t* + 63 + 11t2 + 8t + 7 to all positive real values of t.
Then t can be expressed as

It follows that t > 3+/n holds for sufficiently large n (and hence also

for sufficiently large t), as long as 8 < (‘/;
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Proof of Theorem 2

For any constant a < </g = .7598. .. and for every n sufficiently large
(with respect to ), ui(n) — up(n) > a/n.

Let tp > 8 be an even integer large enough, so that
to—7> %(to +2) and ty > B4/ n(to, t3).
(Since the involved functions are monotone, it follows that
t—7> g(t+2) and t > B4/ n(t, t2)

B

hold for every t > ty.)
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Proof of Theorem 2

For any constant a < </g = .7598. .. and for every n sufficiently large
(with respect to ), ui(n) — up(n) > a/n.

For every n > n(to, t2), there is an even integer t such that
n(t,t?) < n < n(t+2,(t+2)?). Then, using this t, it follows from
Theorem 1, that

()~ uo(n) > £ =72 G(t+2) 2 TBn(t+2.(t+2P) 2 0¥

Q\Q

O
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Open problems
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Open problems

Problem 1.

Does there exist a planar graph which has a 1-planar unit distance drawing
and which has more edges than any matchstick graph on the same number
of vertices?
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Open problems

Problem 1.

Does there exist a planar graph which has a 1-planar unit distance drawing
and which has more edges than any matchstick graph on the same number
of vertices?

Define ugs(n) as the maximum number of
edges of an n-vertex graph that allows for
1-planar unit distance drawings in which only
vertical and horizontal edges cross.

Problem 2.
Prove an upper bound on ug5(n) better than 3n — c¥/n.
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Open problems

Problem 1.

Does there exist a planar graph which has a 1-planar unit distance drawing
and which has more edges than any matchstick graph on the same number
of vertices?

Define ugs(n) as the maximum number of
edges of an n-vertex graph that allows for
1-planar unit distance drawings in which only
vertical and horizontal edges cross.

Problem 2.
Prove an upper bound on ups(n) better than 3n — c¥/n.

Problem 3.
Is up.5(n) < ui(n) for some n? For infinitely many n's?
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Thank you for your attention!
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