Connectivity Augmentation for Planar and Beyond-Planar Graphs

Michael Kaufmann with Hugo Akitaya, Justin Dallant, Erik Demaine, Linda Kleist, Frederick Stock, Csaba Tóth, Torsten Ueckerdt

Connectivity Augmentation for Planar and Beyond-Planar Graphs

Michael Kaufmann with Hugo Akitaya, Justin Dallant, Erik Demaine, Linda Kleist, Frederick Stock, Csaba Tóth, Torsten Ueckerdt

The Price of Connectivity Augmentation for Planar Graphs

Michael Kaufmann

with Hugo Akitaya, Justin Dallant, Erik Demaine, Linda Kleist, Frederick Stock, Csaba Tóth, Torsten Ueckerdt

The Price of Connectivity Augmentation for Planar Graphs

Michael Kaufmann

with Hugo Akitaya, Justin Dallant, Erik Demaine, Linda Kleist, Frederick Stock, Csaba Tóth, Torsten Ueckerdt

Previous work

Therese Biedl, Goos Kant, MK: On triangulating planar graphs under the four-connectivity constraints, Algorithmica 19(4), 427-446, 1997.

Previous work

Therese Biedl, Goos Kant, MK: On triangulating planar graphs under the four-connectivity constraints, Algorithmica 19(4), 427-446, 1997.

Still very often:

assume triangulated planar graph assume 3-connectivity assume 4-connectivity ...

Previous work

Therese Biedl, Goos Kant, MK: On triangulating planar graphs under the four-connectivity constraints, Algorithmica 19(4), 427-446, 1997.

```
Still very often:
```

assume triangulated planar graph assume 3-connectivity assume 4-connectivity ...

Nowadays ..

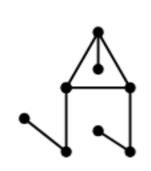
go beyond-planar \rightarrow 1-planar, 2-planar, etc. consider higher connectivity than 4

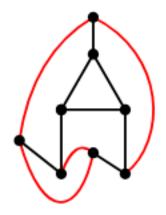
Models

```
Distinguish
geometric model (straight-line drawing)
topological model (embedding)
abstract model
```

Models

Distinguish
geometric model (straight-line drawing)
topological model (embedding)
abstract model







Minimum augmentation to 3-connectivity (4,6,7 edges)

1. The connectivity of ℓ -planar graphs is $O(\sqrt{\ell})$.

- 1. The connectivity of ℓ -planar graphs is $O(\sqrt{\ell})$.
- 2. n points in general position can be connected to a k-connected $O(k^2)$ -planar geometric graph.

- 1. The connectivity of ℓ -planar graphs is $O(\sqrt{\ell})$.
- 2. n points in general position can be connected to a k-connected $O(k^2)$ -planar geometric graph.
- ad 1. Let G=(V,E) be a k-connected ℓ -planar graph. For $k\geq 8$, for all vertices v, $deg(v)\geq k$ Hence $|E|\geq \frac{kn}{2}$

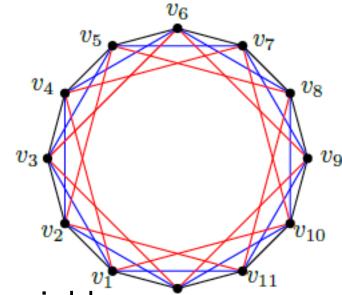
- 1. The connectivity of ℓ -planar graphs is $O(\sqrt{\ell})$.
- 2. n points in general position can be connected to a k-connected $O(k^2)$ -planar geometric graph.
- ad 1. Let G=(V,E) be a k-connected ℓ -planar graph. For $k\geq 8$, for all vertices v, $deg(v)\geq k$ Hence $|E|\geq \frac{kn}{2}$

Crossing lemma gives $cr(G) = \Omega(\frac{m^3}{n^2}) \ge k^3 n$ $\Rightarrow \exists$ edge with $\Omega(cr(G)/m) = \Omega(\frac{m^2}{n^2}) \ge \Omega(k^2)$ crossings $\Rightarrow \ell = \Omega(k^2)$ and $k = O(\sqrt{\ell})$

- 1. The connectivity of ℓ -planar graphs is $O(\sqrt{\ell})$.
- 2. n points in general position can be connected to a k-connected $O(k^2)$ -planar geometric graph.
- ad 1. Let G=(V,E) be a k-connected ℓ -planar graph. For $k\geq 8$, for all vertices v, $deg(v)\geq k$ Hence $|E|\geq \frac{kn}{2}$
- Crossing lemma gives $cr(G) = \Omega(\frac{m^3}{n^2}) \ge k^3 n$ $\Rightarrow \exists$ edge with $\Omega(cr(G)/m) = \Omega(\frac{m^2}{n^2}) \ge \Omega(k^2)$ crossings $\Rightarrow \ell = \Omega(k^2)$ and $k = O(\sqrt{\ell})$

Open: Precise dependency, say for 2-planarity

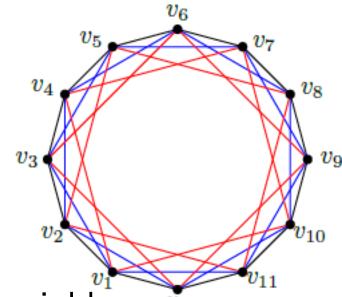
n points in convex position:



k-circulant graph:

vertices connected to their k next neighbors v_0

n points in convex position:

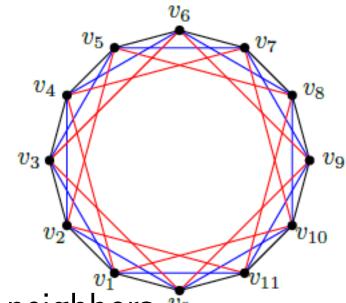


k-circulant graph:

vertices connected to their k next neighbors \vec{v}_0

is 2k-connected, and $k^2 - k$ -planar

n points in convex position:



k-circulant graph:

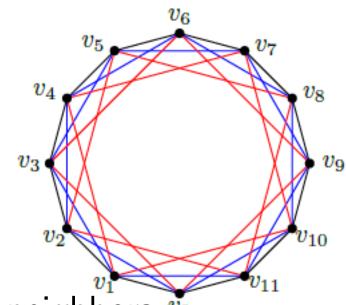
vertices connected to their k next neighbors \overline{v}_0

is 2k-connected, and $k^2 - k$ -planar

best possible:

Graphs with mindeg 2k have local crossing number $\ell \geq k^2 - k$

n points in convex position:



k-circulant graph:

vertices connected to their k next neighbors \vec{v}_0

is 2k-connected, and $k^2 - k$ -planar

best possible:

Graphs with mindeg 2k have local crossing number $\ell \geq k^2 - k$

Proof idea: Let $v_0, ..., v_n$ be vertices in ccw order Consider edge (v_0, v_ℓ) .

Estimate how many edges start at $v_1, ..., v_\ell$ and end outside! This gives lower bound for lcr

Task: Augment 3-connected planar graph to 4-connectivity

Task: Augment 3-connected planar graph to 4-connectivity

Apply a known result about flipping triangles:

Bose et al. Triangulation can be converted into a 4-connected triangulation by a single simult. flip of $\leq \frac{2}{3}n$ edges.

Task: Augment 3-connected planar graph to 4-connectivity

Apply a known result about flipping triangles:

Bose et al. Triangulation can be converted into a 4-connected triangulation by a single simult. flip of $\leq \frac{2}{3}n$ edges.

Augment a triangulation to 4-connected by breaking all separating Just add those $\leq \frac{2}{3}n$ flip edges

Task: Augment 3-connected planar graph to 4-connectivity

Apply a known result about flipping triangles:

Bose et al. Triangulation can be converted into a 4-connected triangulation by a single simult. flip of $\leq \frac{2}{3}n$ edges.

Augment a triangulation to 4-connected by breaking all separating Just add those $\leq \frac{2}{3}n$ flip edges

Obtain a 1-planar 4-connected drawing

Task: Augment 3-connected planar graph to 4-connectivity

Apply a known result about flipping triangles:

Bose et al. Triangulation can be converted into a 4-connected triangulation by a single simult. flip of $\leq \frac{2}{3}n$ edges.

Augment a triangulation to 4-connected by breaking all separating Just add those $\leq \frac{2}{3}n$ flip edges

Obtain a 1-planar 4-connected drawing

Min. simult. flip of a triangulation s.t. the result is 4-connected is equivalent to

min. augmentation of a triangulation to a 1-planar 4-connected gi

Task: Augment 3-connected planar graph to 4-connectivity

Apply a known result about flipping triangles:

Bose et al. Triangulation can be converted into a 4-connected triangulation by a single simult. flip of $\leq \frac{2}{3}n$ edges.

Augment a triangulation to 4-connected by breaking all separating Just add those $\leq \frac{2}{3}n$ flip edges

Obtain a 1-planar 4-connected drawing

Min. simult. flip of a triangulation s.t. the result is 4-connected is equivalent to

min. augmentation of a triangulation to a 1-planar 4-connected growth both problems NP-complete

Some complexity results

Theorem: The min. augmentation problem for a c-connected planar graph G to a k-connected planar graph G' is NP-hard, for $2 \to 3, 3 \to 4, 4 \to 5$.

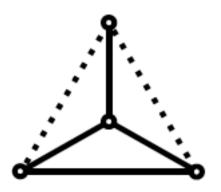
Some complexity results

Theorem: The min. augmentation problem for a c-connected planar graph G to a k-connected planar graph G' is NP-hard, for $2 \to 3, 3 \to 4, 4 \to 5$.

Problem stays hard if G' might be 1-planar (topol./geometric)

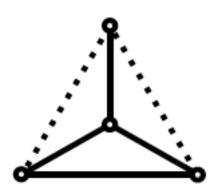
Some ideas for $3 \rightarrow 4$

The building block

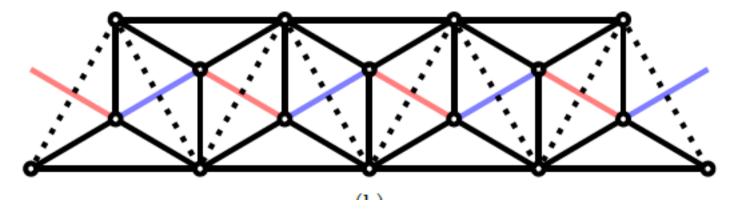


Some ideas for $3 \rightarrow 4$

The building block

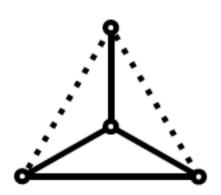


The variable gadget

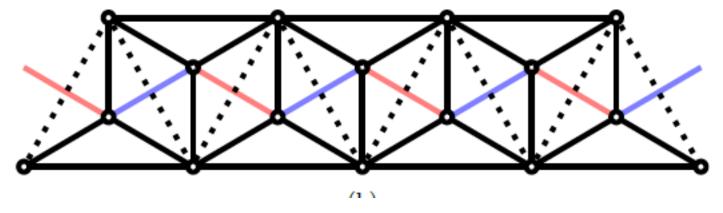


Some ideas for $3 \rightarrow 4$

The building block



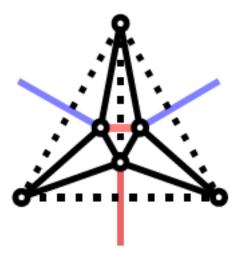
The variable gadget



min. augmentation by either red or blue edges!

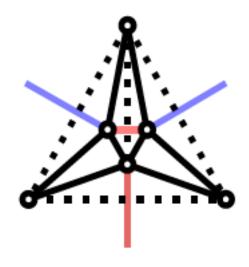
$$3 \rightarrow 4(2)$$

A positive literal gadget

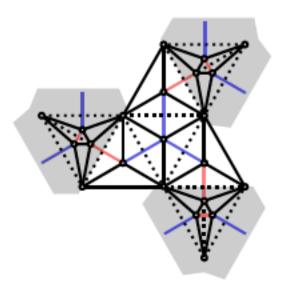


$$3 \rightarrow 4(2)$$

A positive literal gadget

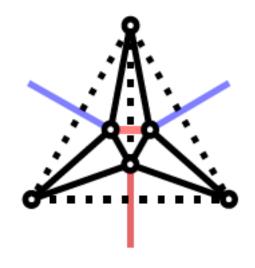


A clause gadget

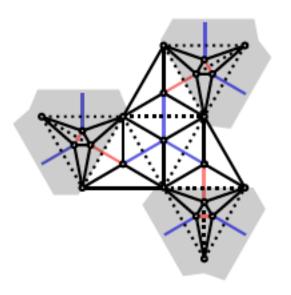


$3 \rightarrow 4(2)$

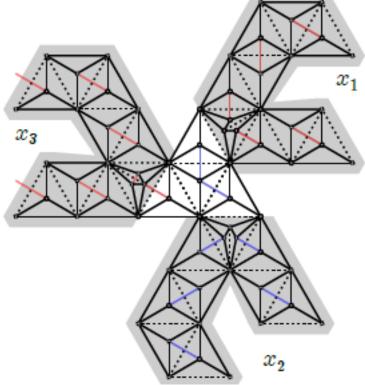
A positive literal gadget



A clause gadget



Satisfying assignmer



Doable cases

Theorem: Given a plane tree T, we can compute a minimum augmentation to a plane 3-connected graph G, where T is spanning for G.

Doable cases

Theorem: Given a plane tree T, we can compute a minimum augmentation to a plane 3-connected graph G, where T is spanning for G.

Theorem: Any planar straight-line graph of n points in convex position can be augmented to a 3-connected 5-planar graph. '5' is best possible.

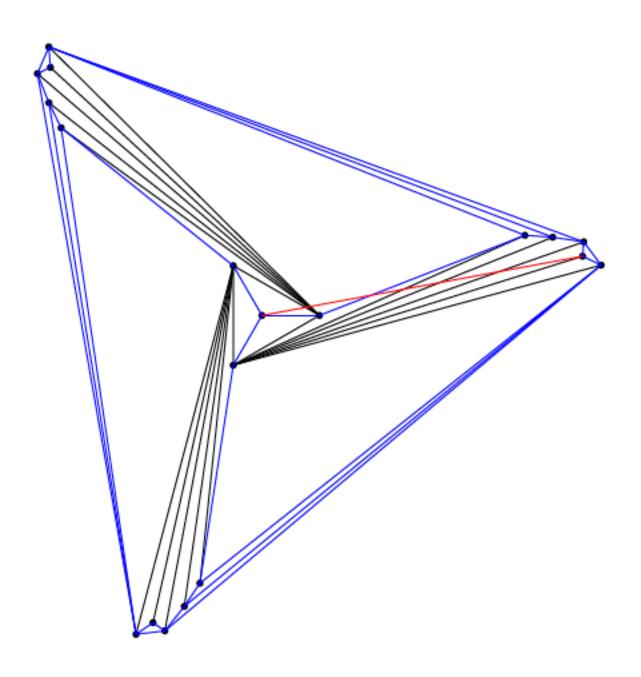
Doable cases

Theorem: Given a plane tree T, we can compute a minimum augmentation to a plane 3-connected graph G, where T is spanning for G.

Theorem: Any planar straight-line graph of n points in convex position can be augmented to a 3-connected 5-planar graph. '5' is best possible.

Theorem: Any PSLG of n points in convex position can be augmented to a k-connected $O(k^2)$ -planar graph. This is best possible.

One last remarkable result



One last remarkable result

