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Previous work

Therese Biedl, Goos Kant, MK: On triangulating
planar graphs under the four-connectivity

constraints, Algorithmica 19(4), 427-446, 1997.

Still very often:
assume triangulated planar graph
assume 3-connectivity
assume 4-connectivity ...

Nowadays ..
go beyond-planar — 1-planar, 2-planar, etc.
consider higher connectivity than 4
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Minimum augmentation to 3-connectivity (4,6,7 edges)
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General remarks

1. The connectivity of ¢-planar graphs is O(+/?).

2. n points in general position can be connected to a
k-connected O(k?)-planar geometric graph.

ad 1. Let G = (V, E) be a k-connected ¢-planar graph.
For k > 8, for all vertices v, deg(v) > k
Hence |E| > &2

Crossing lemma gives cr(G) = (n )2
= 3 edge with Q(cr(G)/m)) = Q(%) > (kz) crossings
= ¢ = Q(k?) and k = O(\/1)

Open: Precise dependency, say for 2-planarity
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Geometric setting

n points in convex position:

k-circulant graph:
vertices connected to their £ next nelghbors %

is 2k-connected, and k% — k-planar

best possible:
Graphs with mindeg 2k have local crossing number ¢ > k% — k

Proof idea: Let v, ..., v,, be vertices in ccw order

Consider edge (vg, vp).

Estimate how many edges start at vy, ..., vy and end outside!
This gives lower bound for [cr
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topological graphs

Task: Augment 3-connected planar graph to 4-connectivity

Apply a known result about flipping triangles:

Bose et al. Triangulation can be converted into a 4-connected
triangulation by a single simult. flip of < %n edges.

Augment a triangulation to 4-connected by breaking all separati
Just add those < %n flip edges

Obtain a 1-planar 4-connected drawing

Min. simult. flip of a triangulation s.t. the result is 4-connected
Is equivalent to
min. augmentation of a triangulation to a 1-planar 4-connected g

both problems NP-complete
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Some complexity results

Theorem: The min. augmentation problem for a c-connected
planar graph GG to a k-connected planar graph G’ is NP-hard,
for2 - 3,3 —+4,4 — 5.

Problem stays hard if G’ might be 1-planar (topol./geometric)
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Some ideas for 3 — 4

The building block

The variable gadget

min. augmentation by either red or blue edges !



3 — 4(2)

A positive literal gadget




3 — 4(2)
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A clause gadget
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Doable cases

Theorem: Given a plane tree I', we can compute a minimum
augmentation to a plane 3-connected graph G, where
T is spanning for GG.

Theorem: Any planar straight-line graph of n points in convex
position can be augmented to a 3-connected b-planar graph.
‘5" Is best possible.

Theorem: Any PSLG of n points in convex position can be
augmented to a k-connected O(k?)-planar graph.
This Is best possible.






One last remarkable result

There Is a geometric

triang. s.t. any augmentation
to 4-connect. has

an edge with Q(n) crossings



