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Definition: k-Planarity

A 𝑘-planar drawing is a drawing of a graph in the plane
such that every edge involves at most 𝑘 crossings.

A graph is 𝑘-planar if it admits a 𝑘-planar drawing.

3-planar 1-planar

The local crossing number of a graph 𝐺,
lcr(𝐺) is the minimum 𝑘 such that 𝐺 is a 𝑘-planar graph.
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Testing k-Planarity is Hard

• Testing 1-planarity is NP-complete,
[Grigoriev & Bodlaender, Algorithmica 2007]

• Testing 𝑘-planarity is NP-complete for every 𝑘 ≥ 1,
even if lcr(𝐺) ≤ 𝑘 or lcr(𝐺) ≥ 2𝑘 is guaranteed.

∘ no poly-time (2 − 𝜀)-approximation, unless P=NP.

[Urschel and Wellens, IPL 2021]

• even on near-planar graphs with max degree 20.
(a planar graph + a single edge)

[Cabello and Mohar, SoCG 2010; SIAM J. Comput. 2013]

We know that computing lcr(𝐺) is very hard.
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Parameterized Complexity of 1-Planarity

To overcome the hardness,
Bannister, Cabello, and Eppstein [WADS 2013; JGAA 2018]

initiated structural parameterizations of 1-planarity.

They showed that testing 1-planarity is:

• FPT w.r.t.

∘ feedback edge set number

∘ treedepth

∘ vertex cover number (poly-kernel)

• paraNP-complete w.r.t.

∘ bandwidth

We extend the results to 𝑘-planarity and other params.
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Our Results
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Known Results (+k Setting)
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Our Results (+k Setting)
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Our Selected Results

To the GD community, I want to advertise:

• Testing 1-planarity is NP-complete,

even on near-planar graphs with

∘ pathwidth at most 4, and

∘ feedback vertex set number (fvs) at most 3.

• For every 𝑐 ≥ 1, testing 𝑘-planarity is NP-complete,
even if lcr(𝐺) ≤ 𝑘 or lcr(𝐺) ≥ 𝑐𝑘 is guaranteed.

∘ no constant-factor approximation, unless P=NP.

• Testing 1-planarity is NP-complete,

even on near-planar graphs with

∘ pathwidth at most 4, and

∘ feedback vertex set number (fvs) at most 3.

• For every 𝑐 ≥ 1, testing 𝑘-planarity is NP-complete,
even if lcr(𝐺) ≤ 𝑘 or lcr(𝐺) ≥ 𝑐𝑘 is guaranteed.

∘ no constant-factor approximation, unless P=NP.
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Thick Edges

Each thick edge consists of 𝑘𝑚 + 1 paths of length 2.

𝑢

⏟⎵⎵⏟
⎵⎵⏟

km
+ 1

Consider 𝐺′ consisting of
• a graph 𝐺 with𝑚 edges
• a vertex 𝑢 adjacent to some vertices via thick edges.

𝑢

𝐺 with𝑚 edges

𝐺′
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Property of Thick Edges

In any 𝑘-planar drawing of 𝐺′, every thick edge
contains a path that is not crossed by an edge of 𝐺.

Observation

𝑢

⏟⎵⎵⏟
⎵⎵⏟

km
+ 1

𝑢

𝐺 with𝑚 edges

𝐺′

Since 𝐺 can have at most 𝑘𝑚 crossings,
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Property of Thick Edges

If 𝐺′ is 𝑘-planar, there exists a 𝑘-planar drawing of 𝐺′

such that the thick edges do not involve a crossing.

Lemma

𝐺

𝑢𝐺′

• for each thick edge,
take a path not crossing 𝐺.
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Property of Thick Edges

If 𝐺′ is 𝑘-planar, there exists a 𝑘-planar drawing of 𝐺′
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Lemma

𝐺
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• for each thick edge,
take a path not crossing 𝐺.

• untangle them.
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Property of Thick Edges

If 𝐺′ is 𝑘-planar, there exists a 𝑘-planar drawing of 𝐺′

such that the thick edges do not involve a crossing.

Lemma

𝐺

𝑢𝐺′

• for each thick edge,
take a path not crossing 𝐺.

• untangle them.

• redraw the other paths.
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Reduction Type 1: from Unary Bin Packing

Problem: Unary Bin Packing

Input: integers 𝑥𝟣,… , 𝑥𝘯 (≥ 0), 𝑏, 𝐵. (unary encoded)

Question: Can we partition {𝑥𝟣,… , 𝑥𝘯} into 𝑏 sets,
Question: so that the sum of each set is 𝐵?

𝑥𝟣

𝑥𝟤

𝑥𝟥

𝑥𝟧

𝑥𝟦 𝐵

⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝑏 bins

W[1]-hard / b.

[JKMS, JCSS 2013]
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Type 1: Construction

We reduce Unary Bin Packing to 1-Planarity.

⏟
⎵⎵
⎵⏟

⎵⎵
⎵⏟
𝐵

• 𝑏-gon where every edge
is a path of length 𝐵.

• 𝑢𝟣,𝑢𝟤 with thick edges
connected to 𝑏 corners.

𝑢𝟣

𝑢𝟤

bins
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Type 1: Construction

We reduce Unary Bin Packing to 1-Planarity.

⏟⎵⏟⎵⏟
𝐵

bins 𝑢𝟣

𝑢𝟤
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Type 1: Construction

We reduce Unary Bin Packing to 1-Planarity.

𝑥𝟤 𝑥𝟣

⏟⎵⏟⎵⏟
𝐵

𝑥𝟦
𝑥𝟧

𝑥𝟥

bins

essentially, we have to

solve Unary Bin Packing!

𝑢𝟣

𝑢𝟤
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Type 1: Properties of Constructed Graphs

……

• near-planar graphs (:= planar + a single edge)

• fvs at most 3 (fvs := #vertices to delete to a forest)

• pathwidth at most 4

• distance to a path forest at most 𝑂(𝑏)
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Type 1: Properties of Constructed Graphs

……

• near-planar graphs (:= planar + a single edge)

• fvs at most 3 (fvs := #vertices to delete to a forest)

• pathwidth at most 4

• distance to a path forest at most 𝑂(𝑏)

caterpillar
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Type 1: Properties of Constructed Graphs

……

• near-planar graphs (:= planar + a single edge)

• fvs at most 3 (fvs := #vertices to delete to a forest)

• pathwidth at most 4

• distance to a path forest at most 𝑂(𝑏)

# = 𝑏
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Type 1: Difference with [GB, 2007]

Type 1 is based on the first NP-hardness of 1-planarity.
[Grigoriev & Bodlaender, Algorithmica 2007]

figures taken from the paper (https://doi.org/10.1007/11537311_33)

• reduction from 3-Partition
∘ → from Unary Bin Packing
We can use W[1]-hard / 𝑏.

• unbounded fvs due to thick edges.
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Type 2: Base Idea

For the other type of reduction,
we follow the idea of [Garey & Johnson, SIAM JADM 1983],
which showed the NP-hardness of Crossing Number.

an instance of
Bipartite Crossing Number

+

two additional vertices

figure taken from the paper (https://doi.org/10.1137/0604033)
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Type 2: From 2-Layer k-Planarity

We do the same thing on k-Planarity!

𝑢𝘟

⇔

𝑋

𝑌

is 2-layer 𝑘-planar is 𝑘-planar

𝑢𝘠

𝐺 𝐺′
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Pipeline from Bandwidth

Bandwidth

2-Layer k-Planarity

k-Planarity

It propagates hardness of Bandwidth to k-Planarity.

(fvs+=0) reduction

[K, O, Wolff, SoCG 2025]

(fvs+=2) reduction

(in the previous page) • no cosntant-factor approx.

• W[1]-hard w.r.t. treedepth

on graphs with fvs=2,

• no cosntant-factor approx.

• W[1]-hard w.r.t. treedepth

on trees,
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Open Problems

bandwidth treedepth
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twin-cover

number

neighborhood
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distance to
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• FPT w.r.t. vertex cover number?
∘ crossing minimization is FPT.
[Hliněný & Sankaran, GD 2019]

• W[1]-hard w.r.t. vi / nd?

• XP for W[1]-hard parameters?

modular-width

paraNP-hard

W[1]-hard

FPT
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Summary

(+k)

• 1-planarity is NP-c / near-planar with pw≤ 4, fvs ≤ 3.

• no constant-factor approximation for lcr(𝐺).
diameter

treewidth

pathwidth shrub-depth modular-width

bandwidth treedepth

domination

number

feedback vertex

set number

distance to

cluster

feedback edge

set number

vertex
integrity

twin-cover

number

neighborhood

diversity

cliquewidth

vertex cover number

distance to
path forest

longest

induce path
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• XP for W[1]-hard parameters?

• W[1]-hard w.r.t. vi / nd?
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