slides available

Structural Parameterizations of k-Planarity

Tatsuya Gima Yasuaki Kobayashi

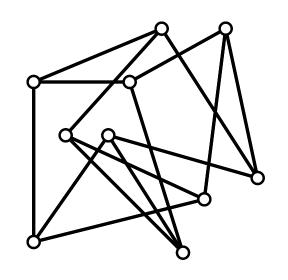
(Hokkaido University)

Yuto Okada (Nagoya University)

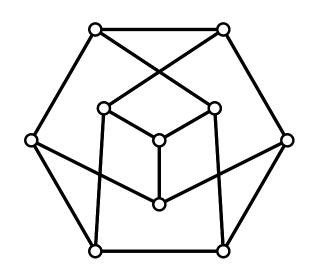
Definition: k-Planarity

A *k*-planar drawing is a drawing of a graph in the plane such that every edge involves at most *k* crossings.

A graph is k-planar if it admits a k-planar drawing.



3-planar



1-planar

The local crossing number of a graph G, lcr(G) is the minimum k such that G is a k-planar graph.

Testing k-Planarity is Hard

We know that computing Icr(G) is very hard.

- Testing 1-planarity is NP-complete,
 [Grigoriev & Bodlaender, Algorithmica 2007]
- even on near-planar graphs with max degree 20.
 (a planar graph + a single edge)
 [Cabello and Mohar, SoCG 2010; SIAM J. Comput. 2013]
- Testing k-planarity is NP-complete for every $k \ge 1$, even if $lcr(G) \le k$ or $lcr(G) \ge 2k$ is guaranteed.
 - no poly-time (2ε) -approximation, unless P=NP.

[Urschel and Wellens, IPL 2021]

Parameterized Complexity of 1-Planarity

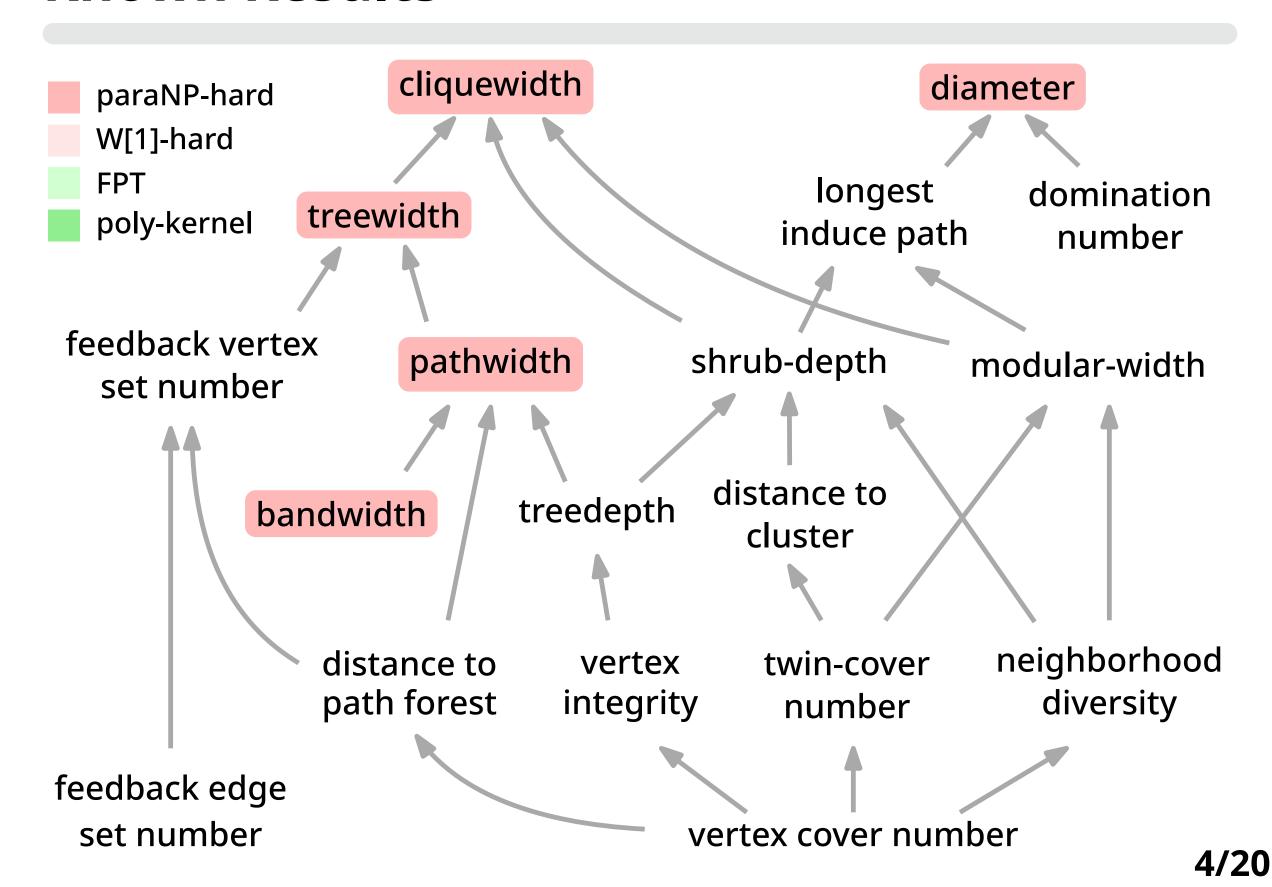
To overcome the hardness, Bannister, Cabello, and Eppstein [WADS 2013; JGAA 2018] initiated structural parameterizations of 1-planarity.

They showed that testing 1-planarity is:

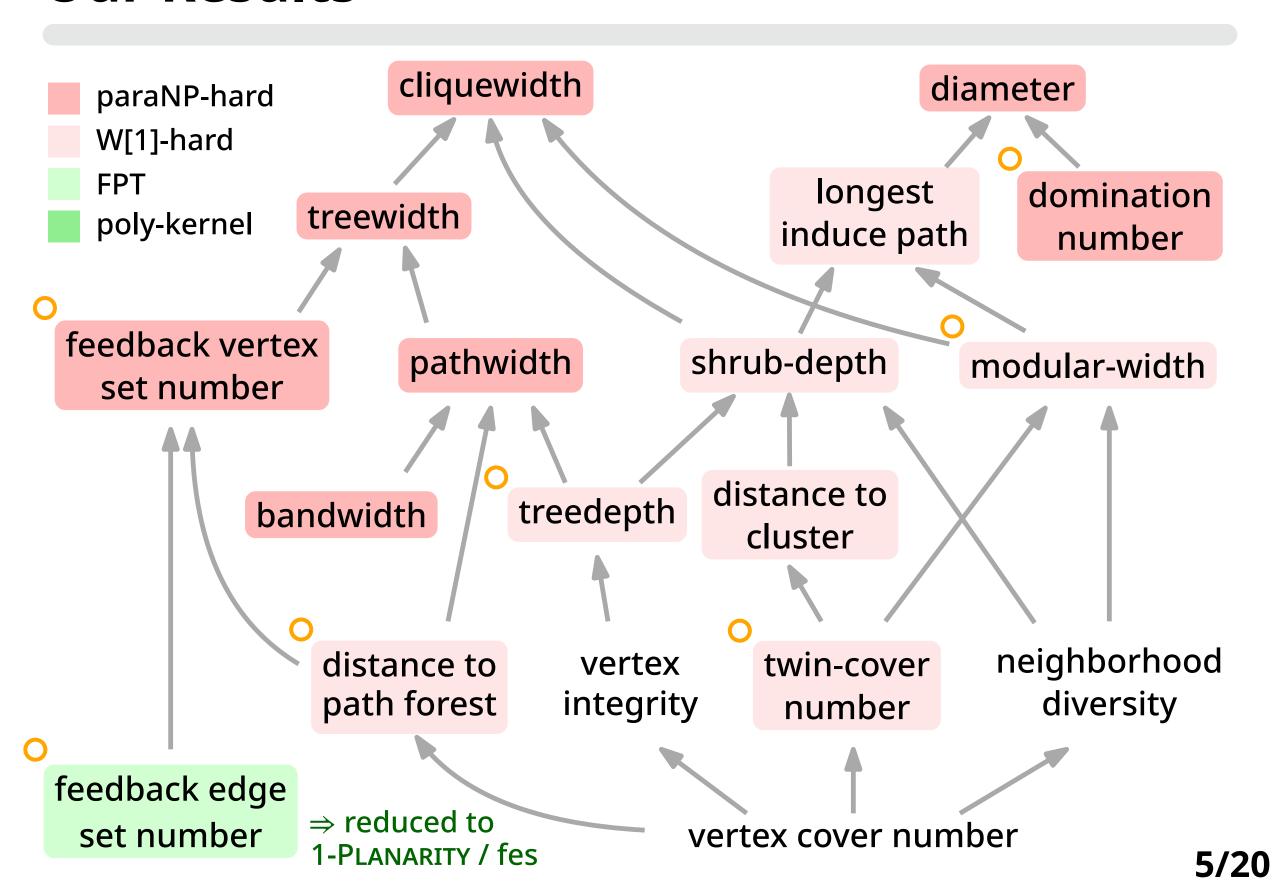
- FPT w.r.t.
 - feedback edge set number
 - treedepth
 - vertex cover number (poly-kernel)
- paraNP-complete w.r.t.
 - bandwidth

We extend the results to k-planarity and other params.

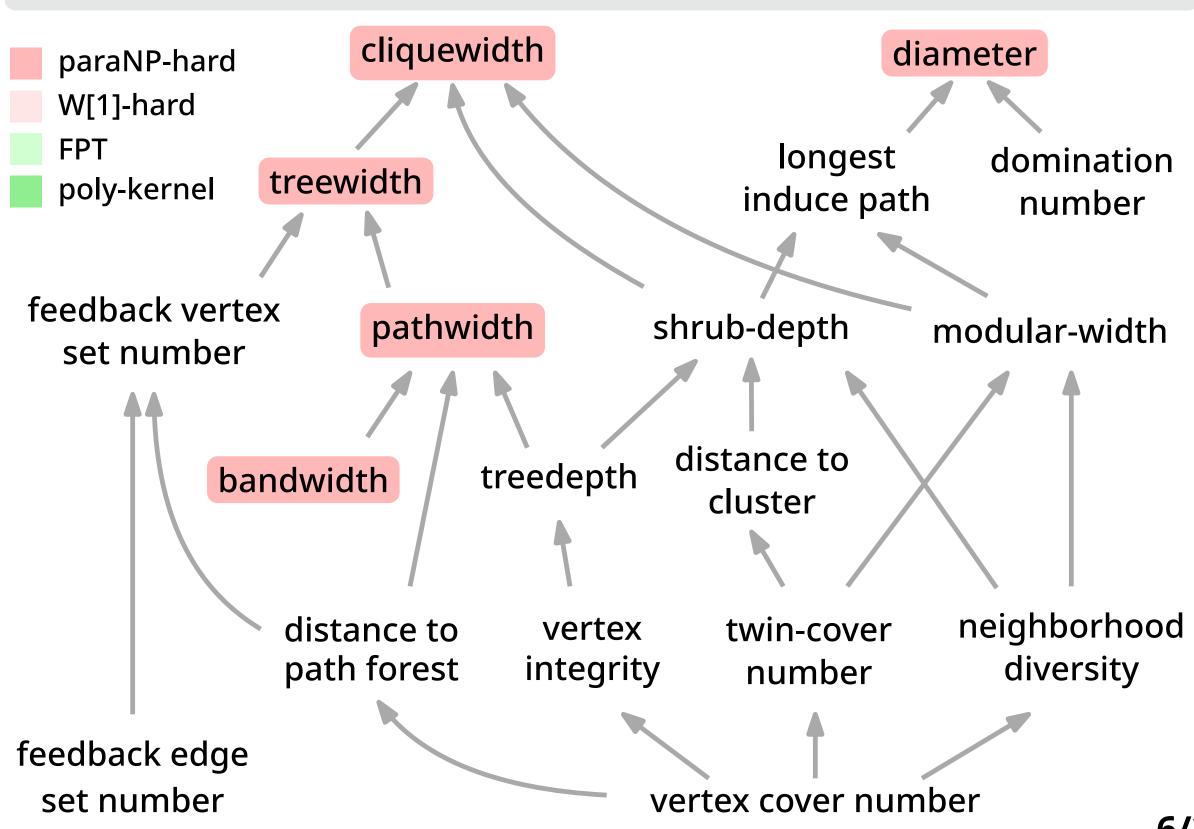
Known Results



Our Results

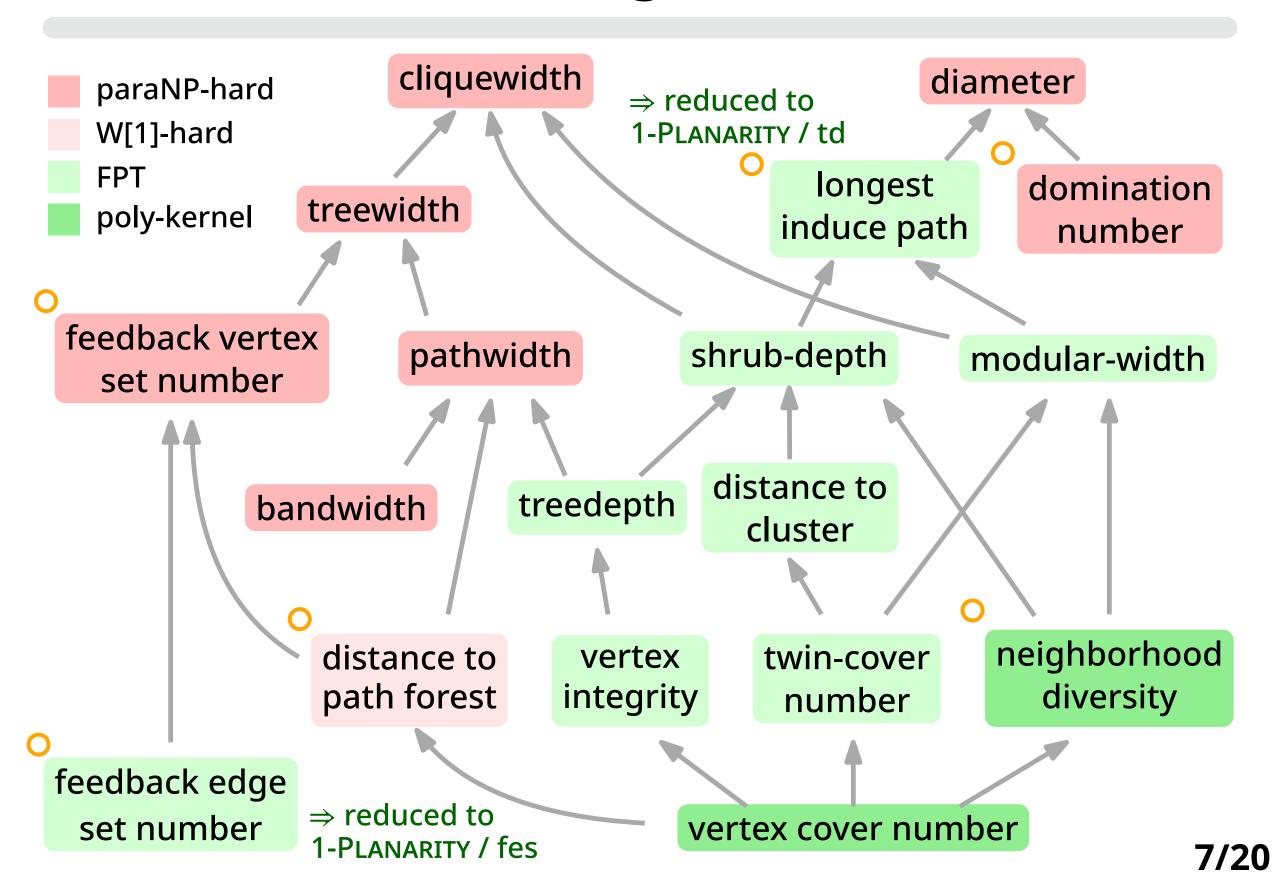


Known Results (+k Setting)



6/20

Our Results (+k Setting)



Our Selected Results

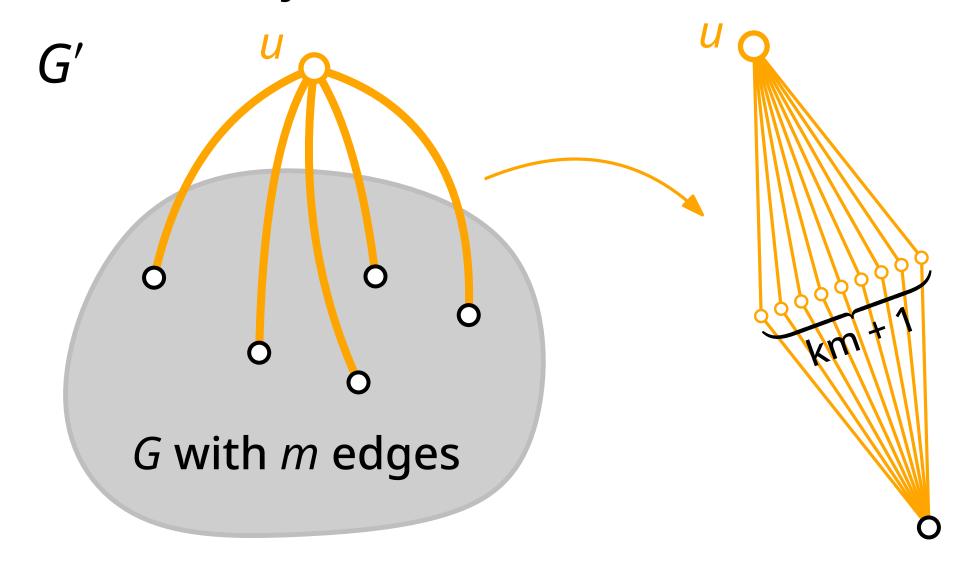
To the GD community, I want to advertise:

- Testing 1-planarity is NP-complete, even on near-planar graphs with
 - pathwidth at most 4, and
 - feedback vertex set number (fvs) at most 3.
- For every $c \ge 1$, testing k-planarity is NP-complete, even if $lcr(G) \le k$ or $lcr(G) \ge ck$ is guaranteed.
 - no constant-factor approximation, unless P=NP.

Thick Edges

Consider G' consisting of

- a graph G with m edges
- a vertex u adjacent to some vertices via thick edges.

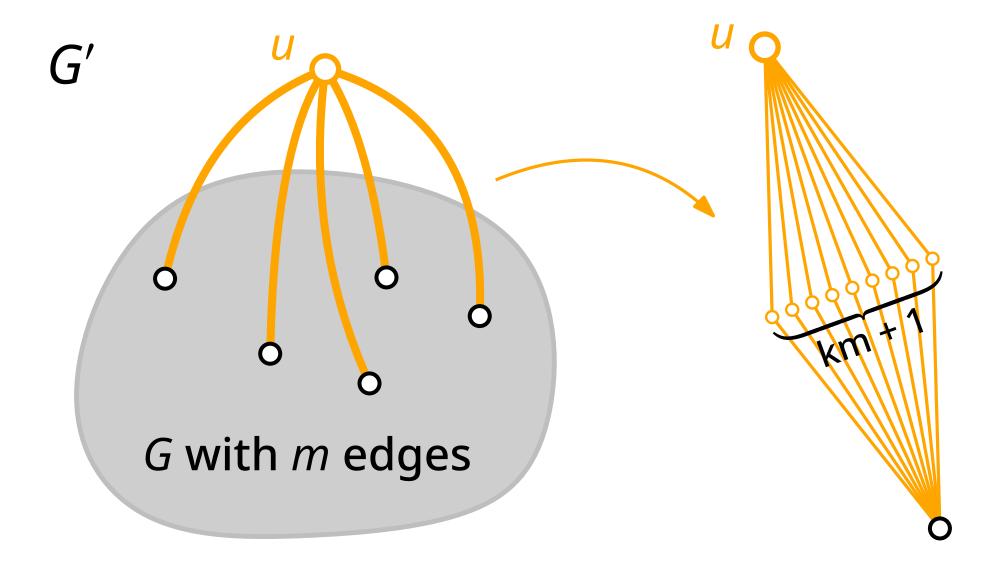


Each thick edge consists of km + 1 paths of length 2.

Since *G* can have at most *km* crossings,

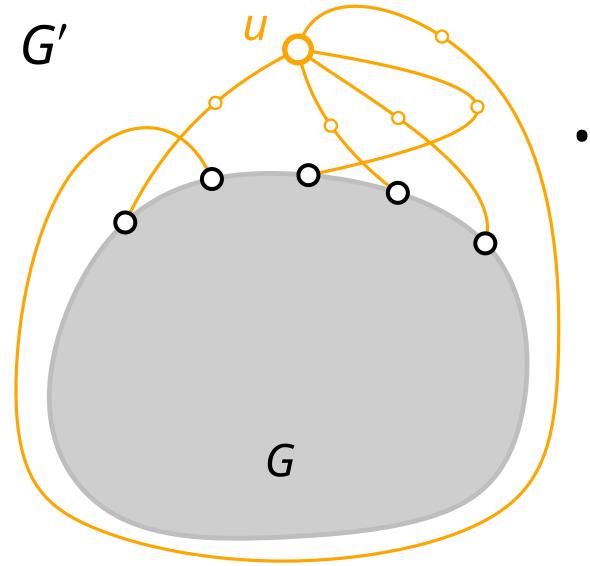
Observation

In any k-planar drawing of G', every thick edge contains a path that is not crossed by an edge of G.



Lemma

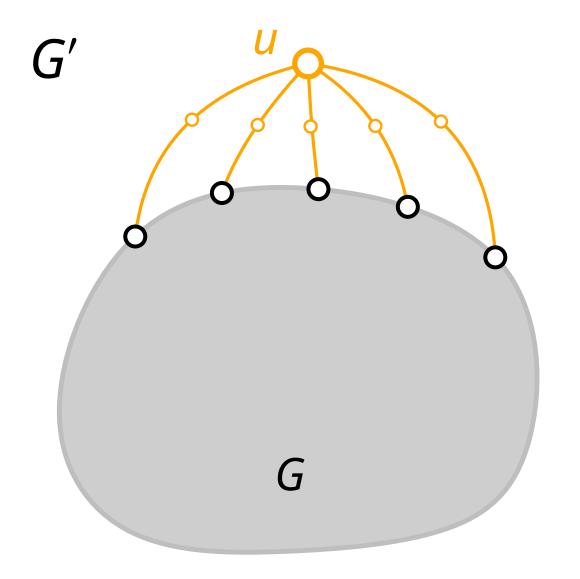
If *G'* is *k*-planar, there exists a *k*-planar drawing of *G'* such that the thick edges do not involve a crossing.



 for each thick edge, take a path not crossing G.

Lemma

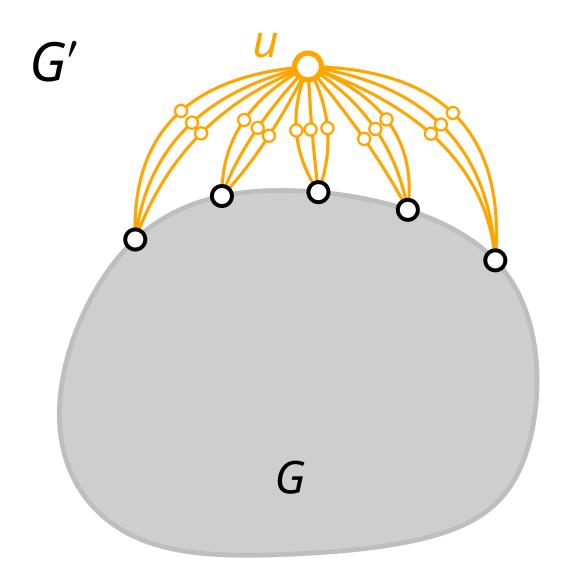
If *G'* is *k*-planar, there exists a *k*-planar drawing of *G'* such that the thick edges do not involve a crossing.



- for each thick edge, take a path not crossing G.
- untangle them.

Lemma

If *G'* is *k*-planar, there exists a *k*-planar drawing of *G'* such that the thick edges do not involve a crossing.



- for each thick edge,
 take a path not crossing G.
- untangle them.
- redraw the other paths.

Reduction Type 1: from Unary Bin Packing

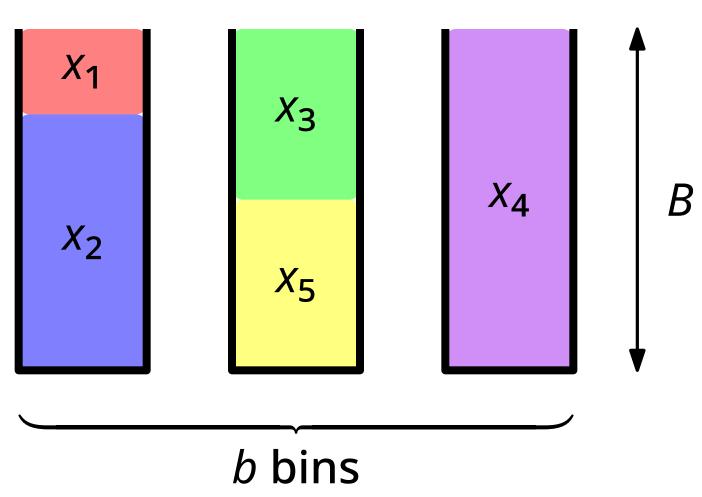
Problem: UNARY BIN PACKING

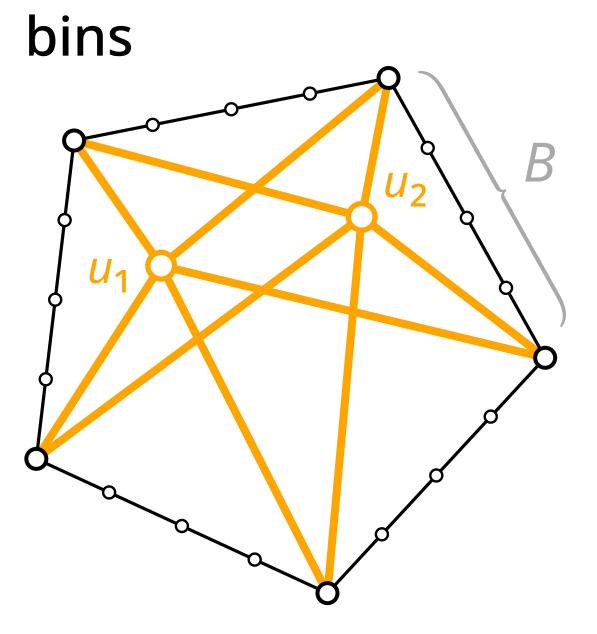
Input: integers $x_1, \dots, x_n \ (\ge 0)$, b, B. (unary encoded)

Question: Can we partition $\{x_1, \dots, x_n\}$ into b sets,

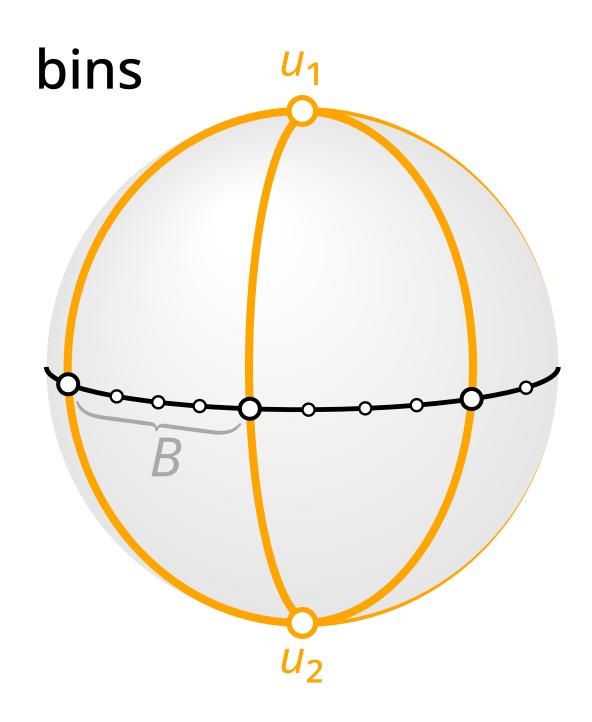
so that the sum of each set is *B*?

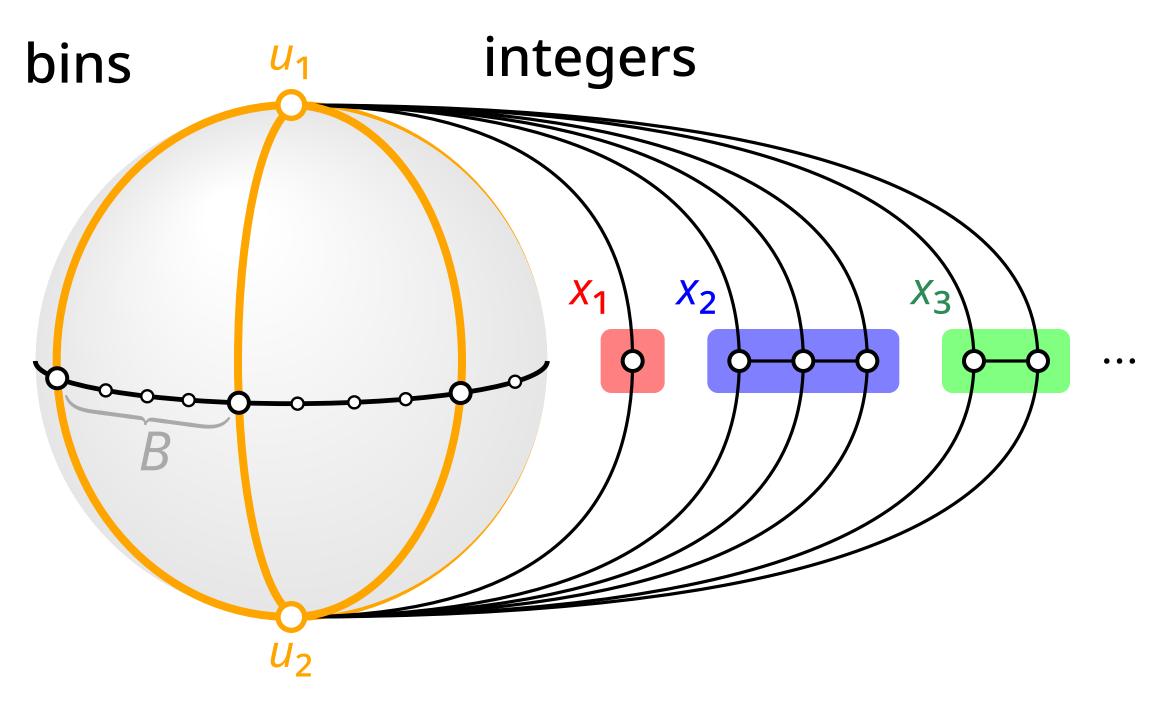
W[1]-hard / b. [JKMS, JCSS 2013]

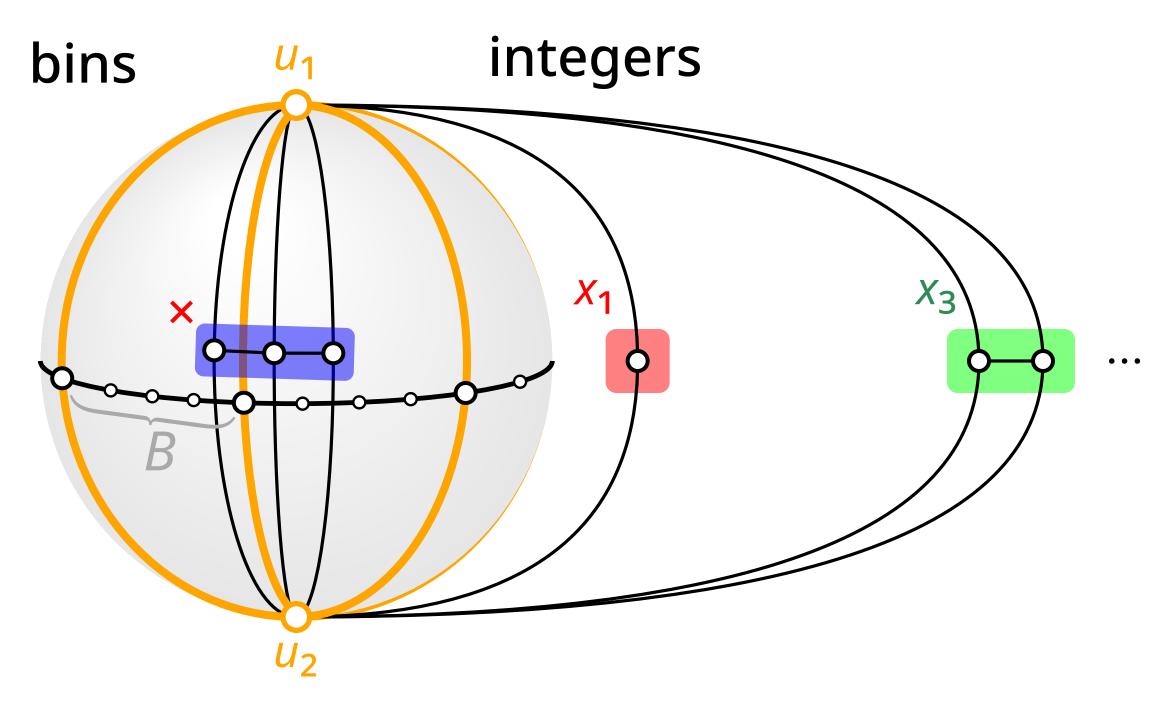




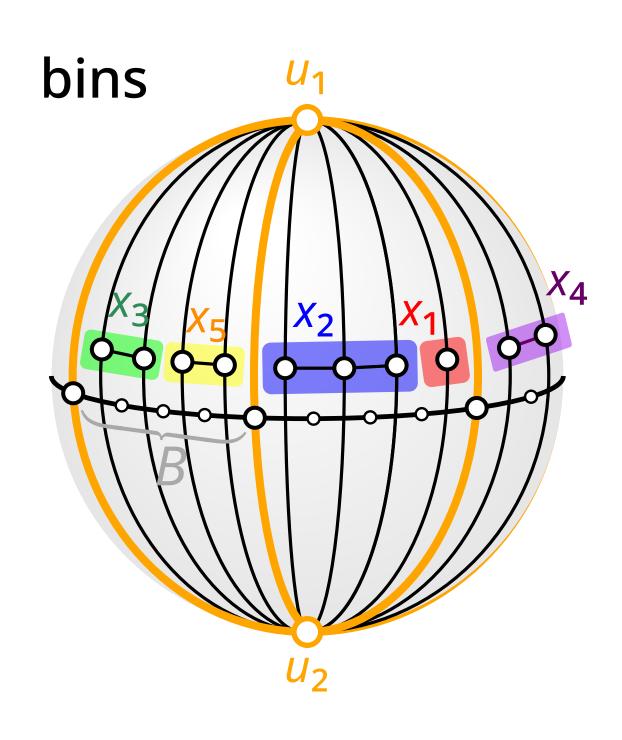
- *b*-gon where every edge is a path of length *B*.
- u₁, u₂ with thick edges connected to b corners.





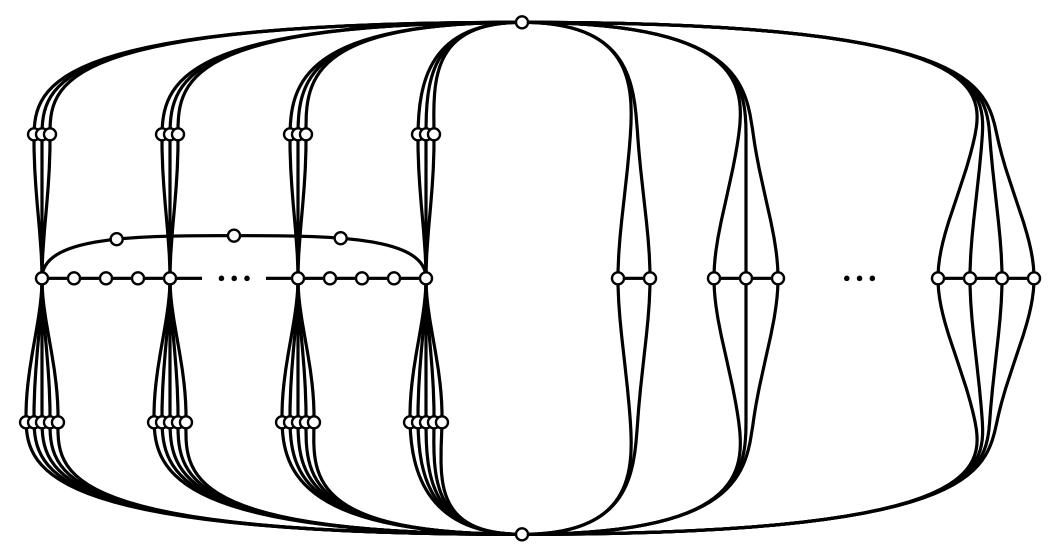


We reduce Unary Bin Packing to 1-Planarity.

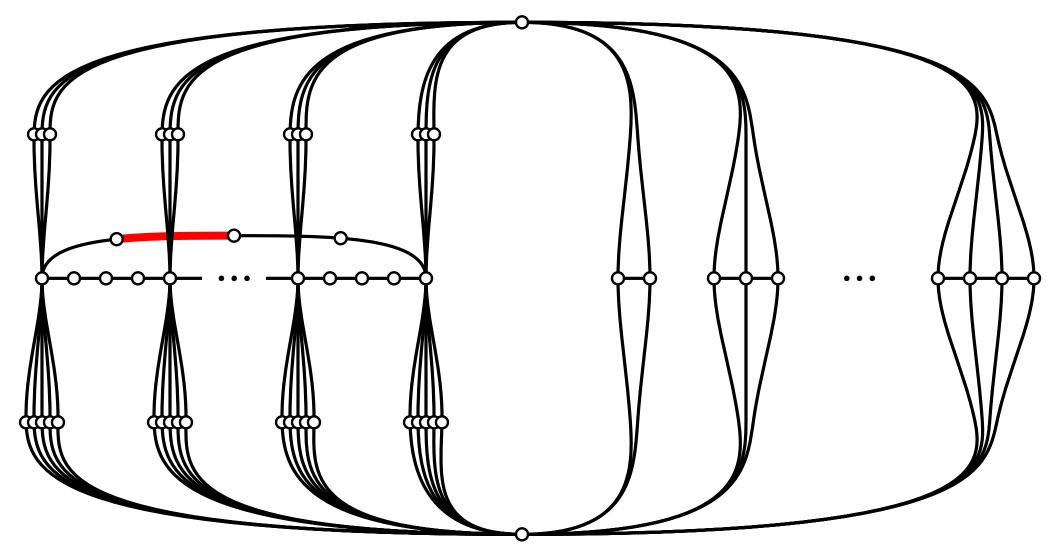


essentially, we have to solve Unary Bin Packing!

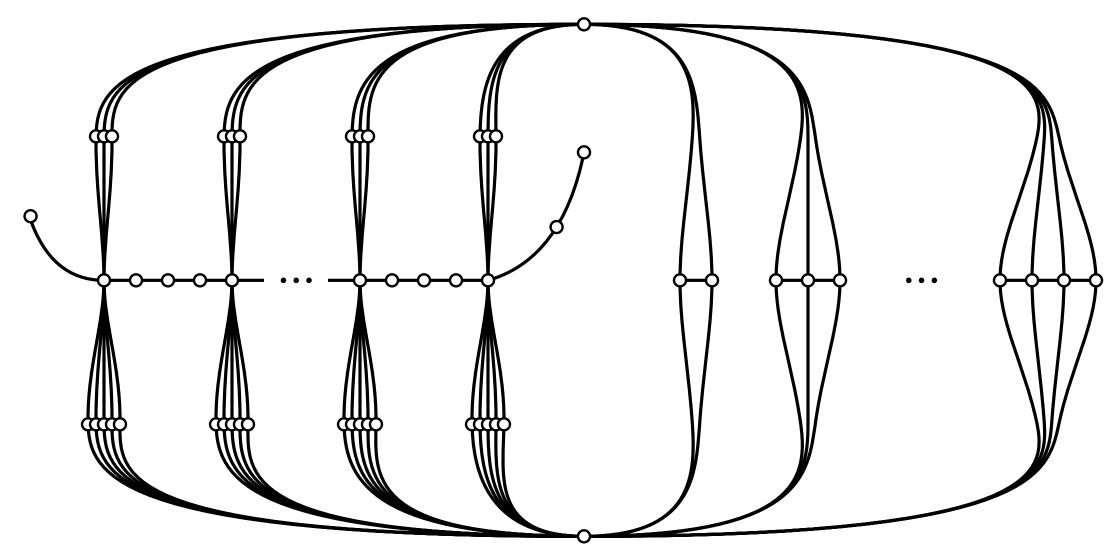
- near-planar graphs (:= planar + a single edge)
- fvs at most 3 (fvs := #vertices to delete to a forest)
- pathwidth at most 4
- distance to a path forest at most O(b)



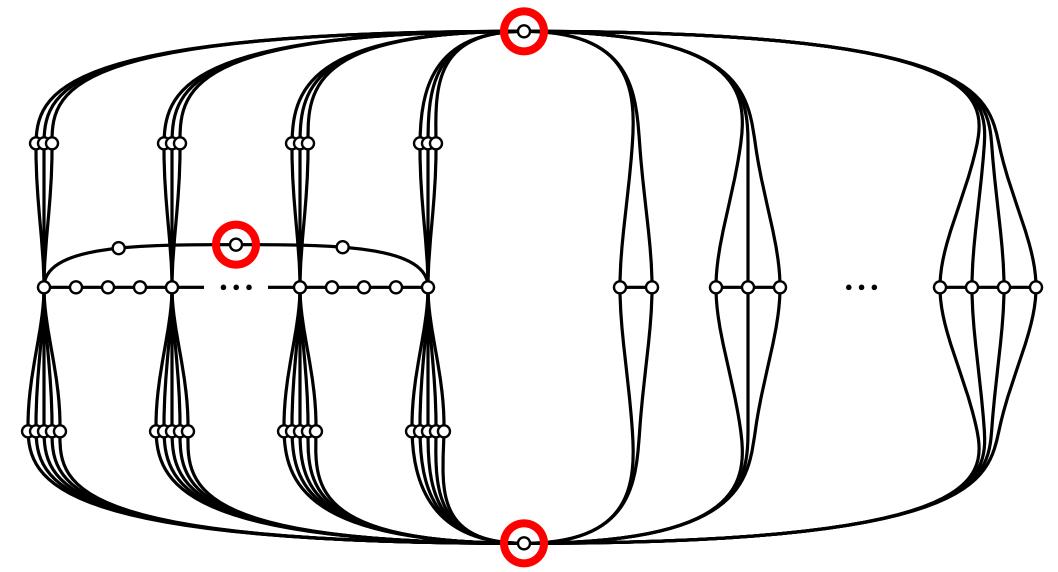
- near-planar graphs (:= planar + a single edge)
- fvs at most 3 (fvs := #vertices to delete to a forest)
- pathwidth at most 4
- distance to a path forest at most O(b)



- near-planar graphs (:= planar + a single edge)
- fvs at most 3 (fvs := #vertices to delete to a forest)
- pathwidth at most 4
- distance to a path forest at most O(b)

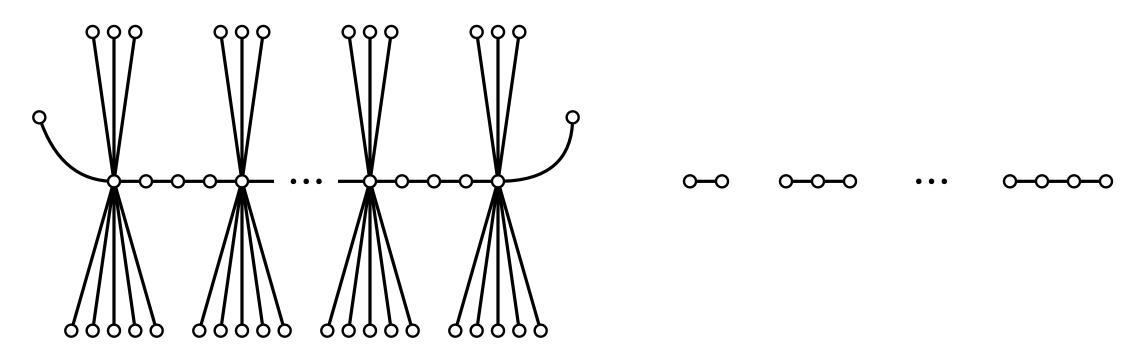


- near-planar graphs (:= planar + a single edge)
- fvs at most 3 (fvs := #vertices to delete to a forest)
- pathwidth at most 4
- distance to a path forest at most O(b)

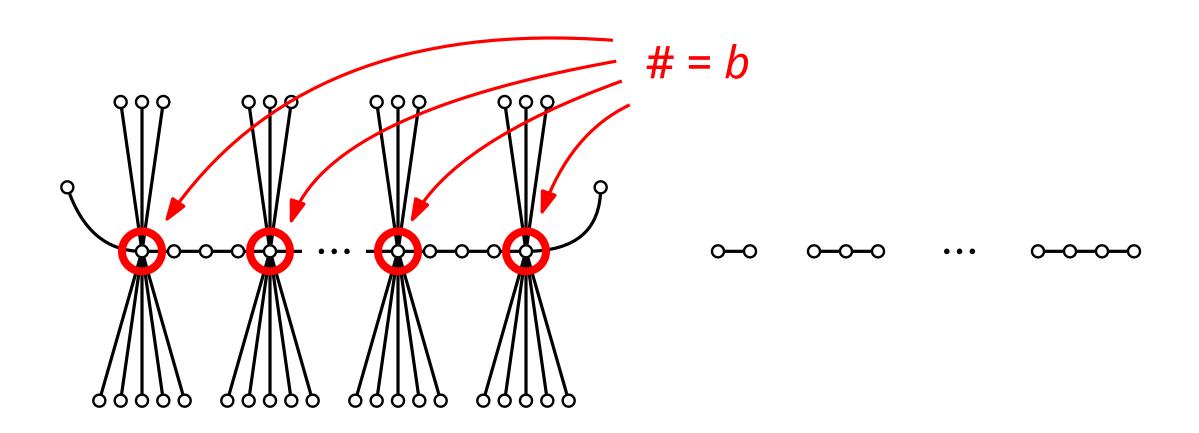


- near-planar graphs (:= planar + a single edge)
- fvs at most 3 (fvs := #vertices to delete to a forest)
- pathwidth at most 4
- distance to a path forest at most O(b)

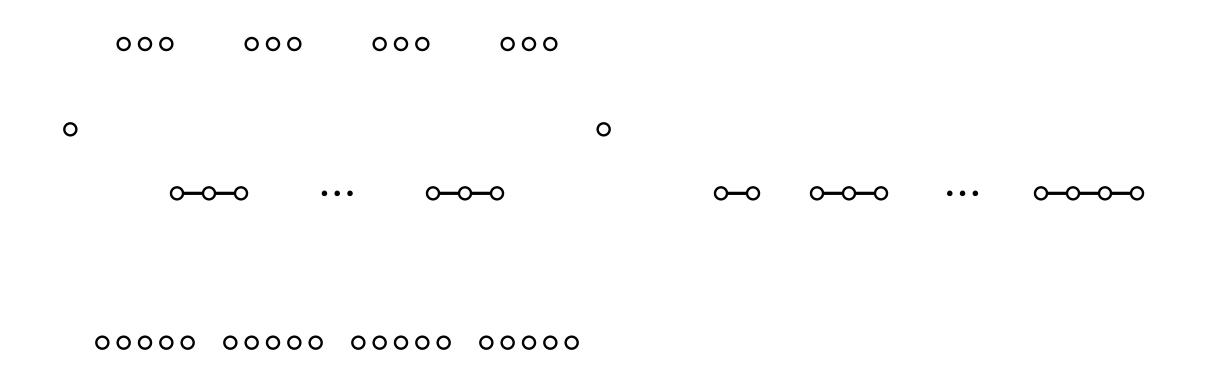
caterpillar



- near-planar graphs (:= planar + a single edge)
- fvs at most 3 (fvs := #vertices to delete to a forest)
- pathwidth at most 4
- distance to a path forest at most O(b)



- near-planar graphs (:= planar + a single edge)
- fvs at most 3 (fvs := #vertices to delete to a forest)
- pathwidth at most 4
- distance to a path forest at most O(b)



Type 1: Difference with [GB, 2007]

Type 1 is based on the first NP-hardness of 1-planarity.

[Grigoriev & Bodlaender, Algorithmica 2007]

- reduction from 3-Partition
 - → from UNARY BIN PACKING
 We can use W[1]-hard / b.
- unbounded fvs due to thick edges.

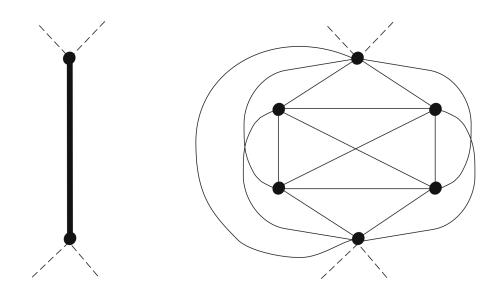
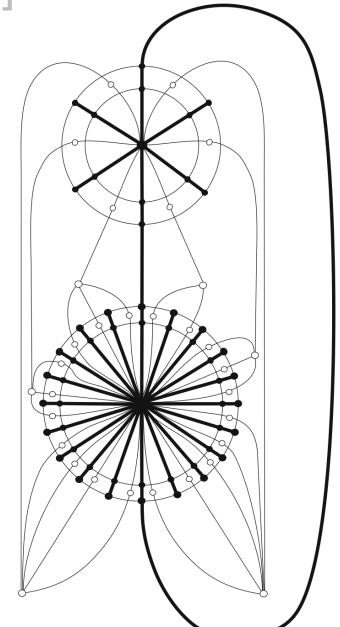
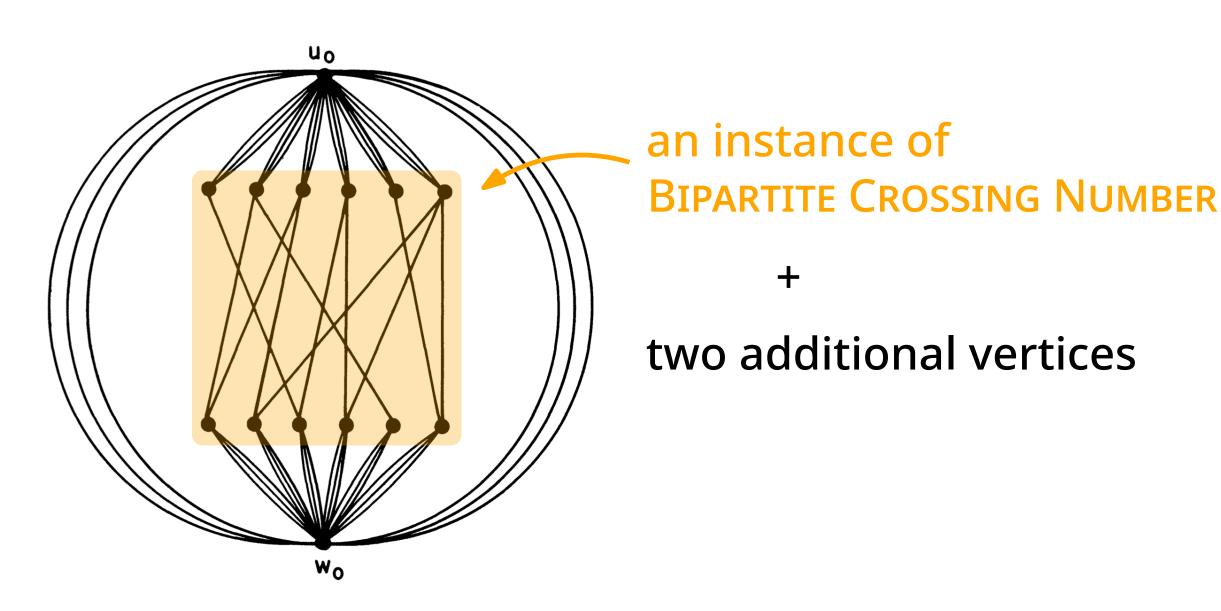


Fig. 1. Thick edge is a graph K_6



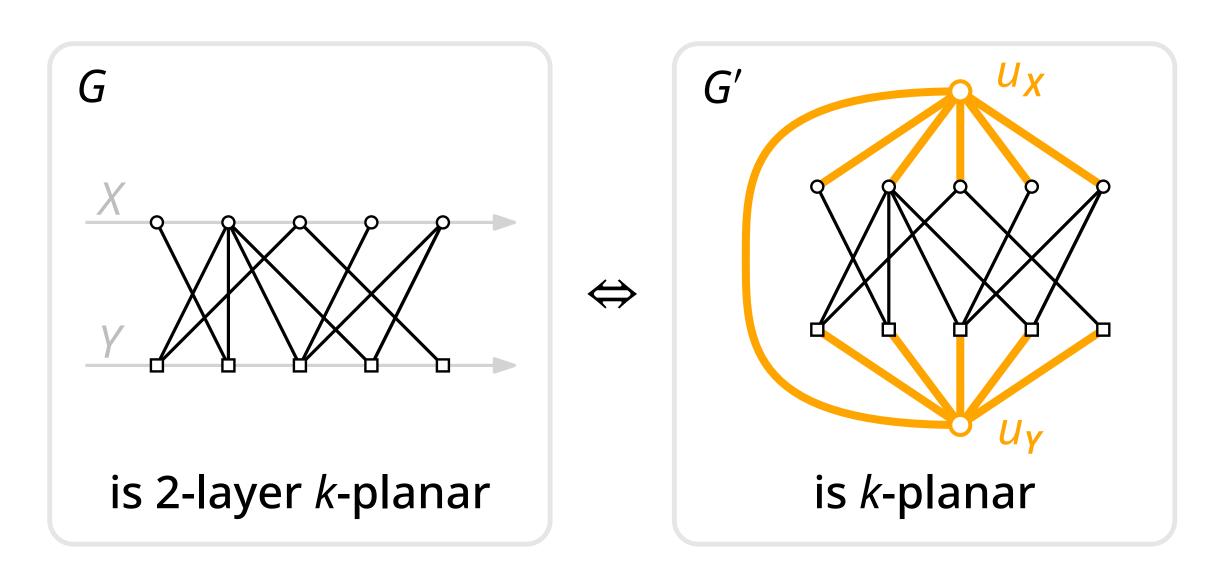
Type 2: Base Idea

For the other type of reduction, we follow the idea of [Garey & Johnson, SIAM JADM 1983], which showed the NP-hardness of Crossing Number.



Type 2: From 2-Layer k-Planarity

We do the same thing on k-Planarity!



Pipeline from Bandwidth

It propagates hardness of BANDWIDTH to k-PLANARITY.

BANDWIDTH

2-LAYER K-PLANARITY

(fvs+=2) reduction (in the previous page)

k-PLANARITY

on trees,

- no cosntant-factor approx.
- W[1]-hard w.r.t. treedepth

on graphs with fvs=2,

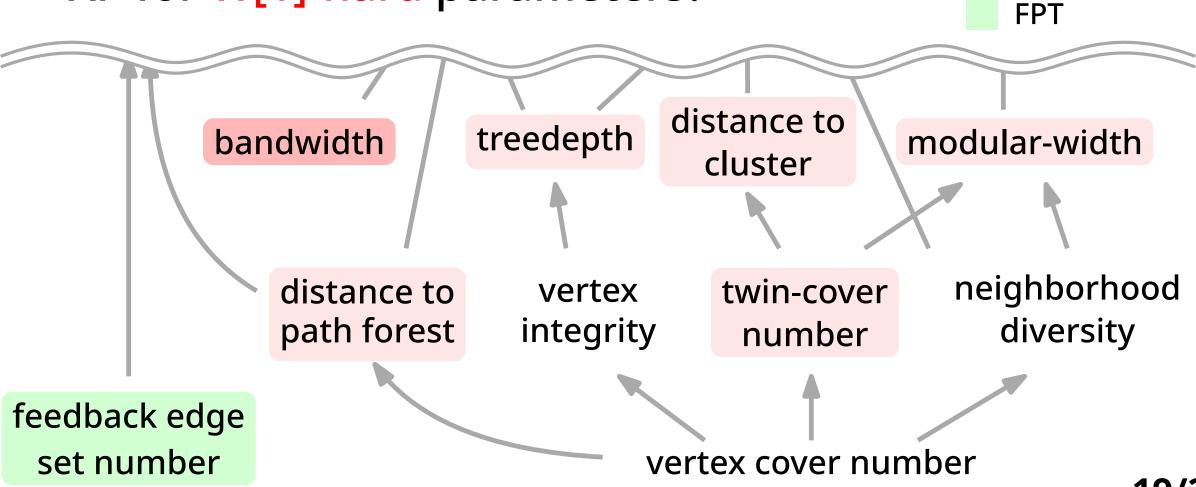
- no cosntant-factor approx.
- W[1]-hard w.r.t. treedepth

Open Problems

- FPT w.r.t. vertex cover number?
 - crossing minimization is FPT.

[Hliněný & Sankaran, GD 2019]

- W[1]-hard w.r.t. vi / nd?
- XP for W[1]-hard parameters?

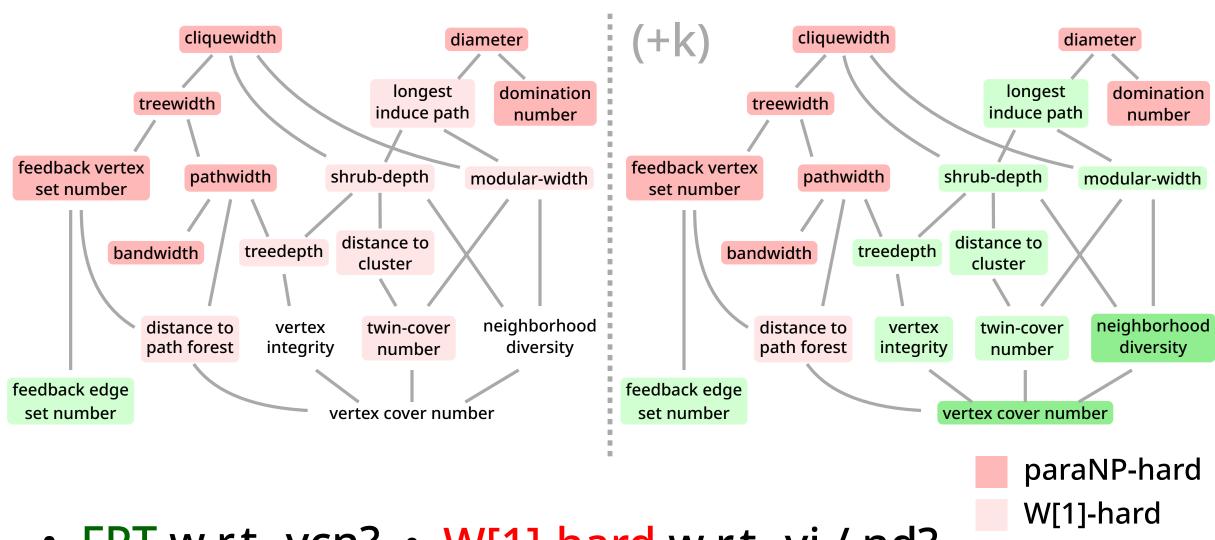


paraNP-hard

W[1]-hard

Summary

- 1-PLANARITY is NP-c / near-planar with pw ≤ 4 , fvs ≤ 3 .
- no constant-factor approximation for lcr(G).



- FPT w.r.t. vcn?W[1]-hard w.r.t. vi / nd?
- XP for W[1]-hard parameters?

FPT

poly-kernel