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This talk

An Introduction to Parameterized Complexity
To showcase important notions from the field
To give inspiration to use these ideas for the problems that
you study
This talk has focus on complexity
Examples often from graph drawing

1 Overview of existing notions
2 New development: XNLP, XALP
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Easy problems with small parameters

Consider facility location problem:
Place as few as possible fire stations in a city such that
each house is < 15 minutes drive from fire station.
Problem is NP-hard, but . . .
Easy if we have just money for three fire stations: try all
possible locations : O(n3).



Introduction FPT Kernels XP The W-hierarchy Bandwidth XNLP XALP Conclusion

Theory of Parameterized Complexity

Many hard problems become easier / polynomial time
solvable when a parameter is small/fixed.
Early 1990s: Downey and Fellows build theory of
parameterized complexity: what is the time complexity
when we assume that some parameter k of the input or
output is considered to be small?
Subfield of algorithms research with:

New terminology
Conferences, workshops
Hundreds (thousands?) of papers . . .
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Parameterized problem

Parameterized problem: subset of Σ∗ ×N, with Σ a finite
alphabet.

We call the second argument the parameter: usually
denoted by k .

Compare with ‘classic’ problem: subset of Σ∗.
Time complexity of algorithm is T(n, k )
(where in the classic setting we have T(n))
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Parameters

There are many different types of parametrizations possible:
Target value
Aspect of input size
Structural parameter of input

Some examples: . . .
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Parameterization: target value

k -Planarity
Given: Graph G, integer k .
Parameter: k .
Question: can we embed G in the plane, such that no edge
has more than k crossings?

Planar edge deletion

Given: Graph G, integer k .
Parameter: k .
Question: can we turn G into a planar graph by removing at
most k edges?
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Parameterization: input ‘size’

Planar embedding with edge length constraints

Given: Planar graph G = (V ,E), for each edge e ∈ E, an
interval Ie ⊆ R.
Parameter: the number of vertices of G, |V |.
Question: is there a plane embedding of G such that for each
edge e, the length of e in the embedding is a value in Ie?



Introduction FPT Kernels XP The W-hierarchy Bandwidth XNLP XALP Conclusion

Parameterization: structural value of input

Rectilinear planarity testing (treewidth)

Given: Planar graph G.
Parameter: the treewidth of G.
Question: Can we draw G such that each edge is drawn as a
horizontal or vertical line segment?

Upwards Planarity Drawing (nb sources)

Given: Directed acyclic graph G = (V ,E).
Parameter: number d of vertices of indegree 0.
Question: Is there a plane drawing of G with for each arc, the
y-coordinate increases?
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Parameterization: combined parameters

k -Planarity(k+pw)
Given: Graph G, integer k
Parameter: k + pathwidth(G)
Question: can we embed G in the plane, such that no edge
has more than k crossings?

Theorem (Gima et al., GD 2025)
1-planarity is NP-complete for graphs of pathwidth 4.
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Parameterized complexity

What is the time complexity of a problem as a function of both:
the input size (|V | or number of bits to write the input)
and the value of the parameter?

‘Classic’ cases:
Polynomial. Time of form (n + k )O(1)

Para-NP-complete: there is a value of the parameter k for
which the problem with this parameter is NP-complete.

A para-NP-complete problem
As 1-Planarity testing is NP-complete for graphs of pathwidth 4
(Gima et al., GD 2025), k -Planarity is para-NP-complete for the
combined parameter k and pathwidth.
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For each value of k polynomial

Downey and Fellows, 1990s, define two flavours of problems
that are polynomial for each value of k :

FPT (Fixed Parameter Tractable)

There is an algorithm that uses f(k )nO(1) time.

XP (Slice-wise polynomial time)

There is an algorithm that uses nf(k) time.
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Different parameterizations — Different complexities

The same problem, but with different parameterisations, can
have varying parameterized complexity

Figure: From: Depian et al., Graph Drawing 2024: The Parameterized
Complexity Of Extending Stack Layouts
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Upwards Planarity

Upwards Planarity
Given: Directed acyclic graph G
Question: Can we draw G without crossing arcs, such that all
arcs are increasing in the y-direction?

Theorem (Garg, Tamassia, 2001)
Upwards Planarity is NP-complete.
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Results for Upwards Planarity (selected results)

Different parameterizations give different complexities:
FPT by treedepth (Chaplick et al, 2022)
FPT by number of sources (Chaplick et al, 2022)
No polynomial kernel by treedepth (sketch later in this talk)
XP by treewidth (Chaplick et al, 2022)
W [1]-hard by treewidth (Jansen et al., GD 2023)
XALP-complete by treewidth (corollary from J et al, BS)
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FPT

FPT (Fixed Parameter Tractable) is the class of parameterized
problems with an algorithm that runs in time f(k )nO(1), with f a
computable function.

Remark
Variants:

weakly uniform FPT: f is not necessarily computable. In
theory different, but no practical examples.
non-uniform FPT: for each k , we can have another
algorithm. Example: results from graph minor theory.
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FPT and XP

Complexity of XP is much higher than FPT:
f(k )nO(1) vs nf(k).
Relation with kernelisation(next).
Downey-Fellows (1990s): Theory to show that problems
are unlikely to be in FPT (W-hierarchy later in the talk).
Proved with diagonalisation: FPT ⊂ XP.
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Kernelisation I

Before doing a ‘slow’ algorithm, first preprocess the input:
build an equivalent, but smaller input.
Kernelisation: with proof that the resulting equivalent input
is small: size bounded by function of parameter.

(I, k) kernel solve yes

no

Q(I, k) = Q(I ′, k′)

(I ′, k′)

In a kernel, the size of (I′, k ′) is bounded by a function of k .
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Kernelisation II

Kernelisation algorithm
A kernel (or kernelisation algorithm) for a problem Q is an
algorithm A maps inputs (I, k ) of Q to inputs (I′, k ′) of the same
problem Q such that:

1 A uses polynomial time;
2 k ′ ≤ g(k ) and |I′| ≤ g(k ) for some function g (the new input

has size bounded by a function of the parameter);
3 Q(I, k )⇔ Q(I′, k ′) (the answer to the problem does not

change).
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Kernels and FPT

Theorem
A decidable problem P has a kernel, if and only if it fixed
parameter tractable.

Proof.

⇒: take input (I, k ), make in |I|O(1) time a kernel of size f(k ),
and apply any algorithm to solve the kernel: |I|O(1) + g(f(k ))
time.
⇐: If P has an f(k )nc algorithm A : run A for nc+1 time steps. If
A finishes, then output the answer (or transform to trivial
instance); otherwise: nc+1 < f(k )nc

⇒ n < f(k ), and the
original input is a kernel. □
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Example: Point-line Cover

Point-line Cover
Given: n points in 2-dimensional space, integer k .
Question: Can we draw k straight lines that cover all n points?

Figure: An instance, and a solution with k = 3
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Kernelisation algorithm

1 While there is a line that covers more than k uncovered
points: choose it; k ← k − 1.

Figure: If a line covers more than k uncovered points, we must
choose it
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Kernelisation algorithm

1 While there is a line that covers more than k uncovered
points: choose it; k ← k − 1.

2 If we have more than k 2 points: output NO (or give trivial
input with no solution)

Observe:
After Step 1, each line covers at most k points, so if
n > k 2, there is no solution

Theorem

The Point-Line Cover problem has a kernel with k 2 points, and is
fixed parameter tractable.



Introduction FPT Kernels XP The W-hierarchy Bandwidth XNLP XALP Conclusion

Problems without Polynomial Kernels

Kernel of polynomial size: procedure that changes (I, k ) into
equivalent instance of size O(k O(1))

Theorem (BDFH+FS/D)
If a parameterized problem is compositional and with parameter
in unary NP-hard, then it has no kernel of polynomial size,
unless coNP ⊆ NP/poly.

Compositional comes in two flavours: or-composition
(Fortnow/Santhanam) and and-composition (Drucker).
Idea: procedure to take n instances (I1, k ) . . . , (In, k ) and
build a new instance (I, f(k ) with
Q(I, f(k ))⇔

∨
j Q(Ij , k ) or Q(I, f(k ))⇔

∧
j Q(Ij , k ).
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Upwards Planarity(treedepth) has no polynomial
kernel

Theorem
Upwards Planarity(treedepth) has no polynomial kernel unless
coNP ⊆ NP/poly.

Upwards Planarity is NP-complete; the parameter treedepth
can be given in unary.
And-composition: take the disjoint union of graphs. The
result has an upwards planar drawing, iff each component
has an upwards planar drawing, and the treedepth
increases by at most 1.
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And-composition for Upwards Planarity(treedepth) —
Illustration

. . .

. . .

k k k

k + 1
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XP

XP
XP (or slice-wise polynomial time) is the class of parameterized
problems with an algorithm that uses nf(k) time for a
computable function f

Many problems known to be in XP — techniques include
dynamic programming, enumerating all solutions,
branching, . . .
There are a few XP-complete problems (‘games with few
pieces’)
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Distinguishing FPT and XP

How can we tell that a problem is not in FPT?
Using complexity classes and reductions.
Compare to the situation P versus NP — polynomial
versus exponential time.
Downey and Fellows (1990s) introduced:

Parameterized reductions.
W-hierarchy with complexity classes:
W [1],W [2], . . . ,W [SAT ],W [P].

Originally defined with help of circuits
Equivalent definitions with logic (follows)

If W [1] = FPT , then the Exponential Time Hypothesis is
false — so, we expect that problems that are W [1]-hard are
not Fixed Parameter Tractable.
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Parameterized reduction

Complete problems are defined in terms of a type of reductions.
A parameterized reduction is a function Φ that maps inputs
of parameterized problem A to parameterized problem B:

A(I, k )⇔ B(Φ(I, k )); (YES⇐⇒ YES)
If Φ(I, k ) = (I′, k ′), then k ′ ≤ g(k ) for a computable g (New
parameter is also bounded);
Φ(I, k ) can be computed in f(k )nO(1) time.

Some classes have more restrictions on reductions.

Theorem (Downey,Fellows)
If A has a parameterized reduction to B, and B is in FPT, then
A is in FPT.

So, if B is not in FPT, then A is not in FPT. . .
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W[1]

A problem belongs to W [1], if and only if it has a
parameterized reduction to Weighted 3-Satisfiability.

Weighted 3-Satisfiability
Given: Boolean formula F in Conjunctive Normal Form with
three literals per clause, integer k .
Parameter: k .
Question: Can we satisfy F by setting exactly k variables to
true and all others to false?

Also holds also if we replace 3 by any other fixed integer
≥ 2, or ‘exactly’ by ‘at most’ or ‘at least’.
Independent Set and Clique are W [1]-complete; many other
known W [1]-hard and W [1]-complete problems.
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Upward and Orthogonal Planarity are W [1]-Hard
Parameterized by Treewidth

Orthogonal Planarity Testing

Given: Planar graph G
Question: Is there a planar drawing where all edges are either
a horizontal or a vertical segment?

Theorem (Jansen et al., GD 2023)
The Upward Planarity Testing and Orthogonal Planarity Testing
are W [1]-hard with treewidth of G as parameter.
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W[2]

W [2] has similar characterisation, but clauses can be
arbitrary large.

A problem belongs to W [2], if and only if it has a
parameterized reduction to Weighted CNF-Satisfiability.

Weighted CNF-Satisfiability
Given: Boolean formula F in Conjunctive Normal Form, integer
k
Parameter: k
Question: Can we satisfy F by setting exactly k variables to
true and all others to false?

Dominating Set is W [2]-complete.
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W [t ] for t > 2

W [t ] is ‘roughly’ problems of same complexity as deciding
if a Boolean formula with t alternations between AND and
OR can be satisfied by setting k variables to true.

Weighted t-Normalised Satisfiability

Given: Boolean formula F , integer k , with F of the following
form (with t alternations)

∧∨∧∨∧
· · · (¬)Xi , integer k

Parameter: k
Question: Can we satisfy F by setting exactly k variables to
true and all others to false?
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W [SAT ]

W [SAT ]: any Boolean formula.
W [SAT ]↔Weighted Satisfiability.

Weighted Satisfiability
Given: Boolean formula F , integer k
Parameter: k
Question: Can we satisfy F by setting exactly k variables to
true and all others to false?
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W [P]

The last class in the W-hierarchy is W [P]↔Weighted Circuit
Satisfiability.

Weighted Satisfiability
Given: Boolean circuit C with n input gates and one output
gate, integer k
Parameter: k
Question: Can we let C output true by setting exactly k inputs
to true and all others to false?
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The W-hierarchy: discussion

Hardness for W [1] implies that it is unlikely that problem is
FPT .
Hardness for classes higher in W-hierarchy implies the
same (‘more unlikely’).
Proving W-hardness: similar to NP-completeness proofs
but:

parameter must stay bounded;
exponential (or more) time in parameter is allowed.

In W-hierarchy: problems of the form: choose (at least, at
most, exactly) k elements out of n such that ‘something
holds’.
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Completeness - for what class?

In ‘classic’ complexity theory, we have many complete
problems: NP-complete problems Q usually have a simple
proof that Q ∈ NP and a reduction that shows that Q is
NP-hard.
For W [1] (and other classes in the W -hierarchy), we have
several problems known to be hard for the class, but are
not known to be complete.
This gives a question for many problems, known to be
W [1]-hard: for which class are they complete? (And, does
that give more insight?)
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My XNLP-story starts with Bandwidth

Well studied problem, application for Gaussian elimination.
‘Reorganise a matrix such that all non-zero’s are in a
narrow band around the main diagonal’.

Bandwidth
Given: Undirected graph G = (V ,E), integer k
Parameter: k
Question: Is there a bijection f : V → {1,2, . . . , |V |}, such that
for each edge {v ,w} ∈ E: |(f(v) − f(w)| ≤ k?

1 2 3 4 5 6 7

Figure: A layout with bandwidth 2
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Some early results on Bandwidth

Bandwidth is NP-complete, for long-hair-caterpillars with
hair length three. (Monien, 1983)
1984, Gurari, Sudborough: Bandwidth is in XP: O(nk+1)
time. (Gurari, Sudborough, 1984)
Claim by (B, Fellows, Hallett, 1994) that Bandwidth is
W [t ]-hard for all t for trees.
Conjecture by Hallett, 1994: Bandwidth is not in W [P]. Main
idea:

Problems in W [P] have a certificate with O(k log n) bits.
Bandwidth seems to need Ω(n) bits for certificate.
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More recent results on Bandwidth (parameterized)

(Dregi, Lokshtanov, 2014): W [1]-hard for trees, ETH-based
lower bound.
(B, 2020): Bandwidth is W [t ]-hard for all t for
long-hair-caterpillars.
(B, Groenland, Nederlof, Swennenhuis, 2021): Bandwidth
(for long-hair-caterpillars) is XNLP-complete.

Figure: A (long-hair-)caterpillar is a tree with all vertices of degree
more than two on one path
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The Gurari-Sudborough (1984) Dynamic
Programming algorithm for Bandwidth

Idea: look at initial sequences of ℓ vertices v1, . . . , vℓ. Give
such a sequence a characteristic:

the last k vertices, vℓ−k+1, . . . , vℓ
which neighbours of vℓ−k+1, . . . , vℓ belong to v1, . . . , vℓ

If v1, . . . , vℓ has the same characteristic as v′1, . . . , v
′

ℓ then
either both or none of these two can be extended to a
solution.
For each ℓ, we have O(nk ) characteristics
Algorithm: for ℓ = 1 to n, build table Tℓ of all possible
characteristics of initial sequences of length ℓ.
If Tn is non-empty, say Yes, otherwise No
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From an XP Algorithm to a Non-deterministic
Algorithm

Change XP-algorithm for Bandwidth by Gurari, Subborough
to a non-deterministic algorithm:

Instead of building entire tables, each time
non-deterministically guess one entry from each table. (In
each step, guess the next vertex in the sequence, and
verify if this does not conflict with the bandwidth)

yes
no

yes
no
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A non-deterministic algorithm for Bandwidth

yes
no

yes
no

Algorithm has k vertices and one counter in [1,n] in memory:

Lemma
Bandwidth can be solved by a non-deterministic Turing Machine
in O(kn) time with O(k log n) bits additional memory.

This brings us to a class defined by (Elberfeld et al., 2015).
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Birth of XNLP

(Elberfeld, Stockhusen, Tantau, 2015) define parameterized
classes with bounded memory and time, including

N[f poly , log]: problems solvable on
Non-deterministic Turing Machine;
f(k )nO(1) time;
f(k ) log n space.

(EST, 2015): problems complete for N[f poly , log]:
Non-deterministic Turing machine acceptance with O(k )
cells read-write-tape (with polynomial size alphabet) and
running time bounded by polynomial in n
Timed Non-deterministic Accepting Linear Cellular Automaton
Longest Common Subsequence (with variants)

(B, Groenland, Nederlof, Swennenhuis, 2021): renamed
N[f poly , log] to XNLP.
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Classes with logarithmic space

Classic
L: deterministic, O(log n) space
NL: non-deterministic, O(log n) space
L and NL imply polynomial time

Parameterized
XL: deterministic, O(f(k ) log n) space
XNL: non-deterministic, O(f(k ) log n) space
XNLP: non-deterministic, O(f(k ) log n) space and
O(f(k )poly(n)) time
. . . ⊆ XP
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Many new XNLP-complete problems

Many new XNLP-complete problems have been found (2021 –
now), with results building upon each other, including:

Many problems with pathwidth as parameter (several
papers), or with some other ‘linear width parameter’
Reconfiguration problems (BGNS, 2021)
Scheduling problems (BGNS 2021); (Mallem 2024)
Linear graph structure problems, e.g., Bandwidth

Theorem (Blazej et al., 2024)
Ordered Level Planarity Parameterized by the Number of Levels
is XNLP-complete.

Theorem (B, Groenland, Nederlof, Swennenhuis, 2021)
Bandwidth is XNLP-complete.
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Binary CSP

Binary CSP
Given: Graph G = (V ,E), for each vertex v a set of colours
C(v), and for each edge (v ,w), a set of pairs of allowed colours
C(v ,w) ⊆ C(v) × C(v)
Question: Can we assign each vertex v a colour f(v) ∈ C(v),
such that for each edge (v ,w), we have (f(v), f(w) ∈ C(v ,w)?

,

,
,
,

,
,

,
,
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Possible ‘starting’ XNLP-hard problem

Theorem
Binary CSP is XNLP-complete on k × n grid graphs, with k as
parameter.

The hardness proof can be ‘generic’ (in the style of Cook’s
proof of the NP-completeness of Satisfiability, using the Turing
machine characterisation of the class.

Figure: A 4 × n grid graph
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Proof sketch: Membership

Binary CSP for k by n grid graphs is in XNLP:
For i = 1 to n:

Guess the colours for the vertices in column i.
Have the colours of vertices in columns i − 1 (if existing)
and i in memory.
Check that all adjacent vertices in columns i − 1 and i have
allowed colour pairs. If not: reject.

Accept.
We have 2k vertex colours and the value of i in memory:
O(k log n) bits.
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Proof sketch: Hardness I: the Turing Machine

Finite alphabet Σ;
Finite set of states S, with subsets SA of accepting states
and SR of rejecting states;
Read-Write Tape of length f(k ) log n + head;
Input tape of length n + head;
Collection of transitions: read state, symbol at head on
input tape, symbol at head at RW tape — write symbol at
head on RW tape, move heads 0 or 1 step left or right, go
to new state (non-deterministic).
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Proof: Hardness II: Model in the grid

The read-write tape of 4 logn size

Time 1
Time 2 Time nO(1)

The Input tape

, s, ,( )

Figure: Partition the RW-tape in f(k ) pieces of size log n each. The
colour of the vertex on row i, column t gives the content of the ith
piece of RW-tape and state and location of both heads at time t .

First column colours give initial configuration; last column
colours must have accepting states. BinCSP can model the
proper functioning of TM.
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Dynamic Programming on Path Decompositions

Graphs of small pathwidth have a path decomposition of
small width.
Dynamic programming: compute from left to right a table
for each bag.
Deduce the answer from the last bag.

yes
no
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XNLP-membership Proofs on Path Decompositions

yes
no

yes
no

Figure: Turn the DP into XNLP-membership by guessing the element
from the next table instead of building it
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Example Transformation: List Colouring

List Colouring

Given: Graph G = (V ,E), set of colours C, for each vertex
v ∈ V , a list of colours L(v) ⊆ C
Question: Is there a colouring c : V → C, such that for all
v ∈ V : c(v) ∈ L(v), and for all edges {v ,w} ∈ E: c(v) , c(w).

Theorem
List Colouring with pathwidth as parameter is XNLP-complete.

Membership with discussed technique (DP by (Jansen,
Scheffler, 1997).
Hardness by reduction from Binary CSP for k × n grids.
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Transformation

1 Take input of Binary CSP for k × n grids.
2 Change to equivalent instance with each vertex different

colour set.
3 For each forbidden pair, add a new vertex with list the

forbidden pair.

v w v w

,
,
,

(
(
(

)
)
)
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Transformation Keeps Parameter Small

Figure: From Binary CSP to List Colouring: A k × n grid graph
(pathwidth k ) is transformed to a graph with pathwidth ≤ k + 1

XNLP-hardness proofs for other problems: chains of
reductions, each keeping parameter bounded.
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Consequences of XNLP-hardness

The Slice-wise Polynomial Space Conjecture (follows from
(Michał Pilipczuk and Wrochna, 2018), building upon (Allender
et al., 2014))
If Q is an XNLP-hard problem, then there is no algorithm that
solves Q in O(nf(k)) time and f(k )nO(1) space.

If SPSC holds, no XP-algorithm for the problem can use
FPT space!
Indeed, the known XP algorithms for XNLP-complete
problems use dynamic programming with XP-size tables.
XNLP-hardness implies W [t ]-hardness for all t ∈ N, but
with usually much simpler proofs.
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From path- to tree-structured graphs

Several problems on graphs with a linear structure are
complete for XNLP.
When parameterising by treewidth instead of pathwidth, or
clique-width instead of linear clique-width, we have
XNLP-hardness.
For what class are these problems complete??
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XALP

Based on (Allender et al. 2014) and (Michał Pilipczuk and
Wrochna, 2017) .
(B, Groenland, Jacob, Pilipczuk, Pilipczuk, 2022) define a
class and call it XALP (parameterized variant of class
called NLPaux or SAC(O(log n),nc)).
Where XNLP characterises path-structured dynamic
programming, XALP characterises tree-structured dynamic
programming.
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Definitions of XALP

BGJPP give a number of equivalent definitions of XALP, using
Alternating Turing Machines and circuits. An intuitive definition,
and easy to work with for membership proofs is:

XALP
Let XALP be the class of parameterized problems accepted by
a Non-deterministic Turing Machine that

uses f(k )nO(1) time, for some function f ;
has two types of memory:

It has a stack to which it can push symbols, or pop the top
symbol;
It has a read-write tape of size f(k ) log n.

I.e., XNLP plus a stack!
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Membership in XALP

Most dynamic programming algorithms on a tree
decomposition that ‘use XP time’ can be turned into
XALP-membership proofs
Change ‘build entire tables’ to ‘guess entry in each table’
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DP on tree decompositions

yes
no

A dynamic programming algorithm for tree decompositions:
computes for each bag a table, in post-order (bottom-up);
deduces the answer from the bag of the root.
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DP on tree decompositions and XALP-membership

yes
no yes

no

Turn DP into XALP-membership:
Traverse tree in post-order (bottom-up).

If bag i has α ∈ [0,2] children: pop α elements from stack.
These give ‘guessed’ table entries of children.
From these, guess table entry for i and push it on stack.
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XALP-complete problems

About all problems, known to be XNLP-complete with
pathwidth as parameter are XALP-complete with treewidth
as parameter.
Sequence of reductions start with

Non-Deterministic Turing Machine Acceptance with specific,
extra conditions (details omitted here,)→ Binary CSP with
treewidth as parameter

Theorem (B, Szilagyi, 2024)

Binary CSP for planar graphs with outerplanarity as parameter.

Proof sketch: crossover gadget and embedding of graph in
plane with ‘few crossings’.
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Proof gadget for Planar Binary CSP(outerplanarity)

A B

C D DC

A B

A×B × C ×D

v w wv

x y yx

z

Figure: Crossover gadget.

C ′(v , z) =
{
((c1), (c1, c2, c3, c4)) | (c1, c4) ∈ C(v , y)

}
C ′(w, z) =

{
((c2), (c1, c2, c3, c4)) | (c2, c3) ∈ C(w, x)

}
C ′(x , z) =

{
((c3), (c1, c2, c3, c4)) | (c2, c3) ∈ C(w, x)

}
C ′(y , z) =

{
((c4), (c1, c2, c3, c4)) | (c1, c4) ∈ C(w, x)

}
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Construction in proof for Planar Binary
CSP(outerplanarity)

The graph in the proof for XALP-hardness for Binary
CSP(treewidth) has a special structure.
If we replace each crossover by a vertex then we get an
O(tw2)-outerplanar graph

Figure: Construction gives graph with outerplanarity O(tw2)
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Upwards Planarit and XALP

Theorem
Upwards Planarity(treewidth) is XALP-hard.

Proof.
Follows from combining series of reductions:

1 Binary CSP(treewidth) (BGJPP, 2022)
(From Turing Machine Acceptance)

2 → Binary CSP(outerplanarity) (B, Szilagyi, 2024)
3 → All-or-Nothing Flow(outerplanarity) (B, Szilagyi, 2024)

(elegant proof using Sidon sets (= Golomb rulers)
4 → Upwards Planarity(treewidth) (Jansen et al, GD 2023)

(Long clever proof)
□
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Elements of proof: All-or-nothing flow I

All-or-Nothing Flow

Given: Directed acyclic graph G = (V ,E), capacity of each
edge c(e) ∈ N, target flow integer a, vertices s, t .
Question: Is there a flow f from s to t with value a, such that
for each arc e: f(e) = 0 or f(e) = c(e)?

XALP-hardness with parameter treewidth; for planar graphs
with parameter outerplanarity (or treewidth):

From Binary CSP
Use of Sidon set to model colours
Two gadgets
Piecing the gadgets together (not today)
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Sidon sets / Golomb rulers

A Sidon set (also known as Golomb ruler) is a set of positive
integers {a1, . . . ,an} with the property that each different pair of
integers from the set has a different sum: ai1 + ai2 = aj1 + aj2
implies {i1, i2} = {j1, j2}.

Theorem (Erdös, Turan, 1941)

A Golomb ruler with n elements in {1,4n2
} exists and can be

constructed in polynomial time.



Introduction FPT Kernels XP The W-hierarchy Bandwidth XNLP XALP Conclusion

Elements of proof: All-or-nothing flow II

Map each colour to an element of a Sidon set.

{2, 3, 4} 2 2
3 3

4 4

1 1

1 1

Figure: Gadget for a set S. If 2 ·min(S) ≥ max(S), then flow through
gadget is 0, or one element from S
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Elements of proof: All-or-nothing flow III

,
,
,

2
3
4
8

{2, 8} {2, 8}

{5, 6, 12}{3, 4} {3, 4}v w

C(v) C(v)

C(v, w)C(w) C(w)

Figure: Gadget for arc vw. Either 0 flow, or flow models correct colour
of v, correct colour of w, and correct colouring over arc vw. Use
property of Sidon set.
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More XALP-complete problems: Structural problems

Tree PartitionWidth (introduced as Strong Treewidth by
Seese in 1985).
Domino Treewidth: Is there a tree decomposition of width k
(parameter), such that each vertex is in at most two bags.
Triangulating Coloured Graphs (de Vlas, 2023): Given a
graph with a k -colouring of the vertices, is it a subgraph of
a properly coloured chordal graph? (Problem with
application from phylogeny.)
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Conclusions

Rich theory of parameterized complexity; also rich
landscape of subclasses of XP.
XNLP ‘captures’ large table sequential dynamic
programming.
XALP ‘captures’ large table tree-structured dynamic
programming.
XNLP-hardness implies (assuming the SPSC)
XP-algorithms with ‘much space’.
Many problems are known/shown to be hard for W [1] or
W [2] — interesting to improve this to hardness for larger
classes, and aim at completeness.
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