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This talk

@ An Introduction to Parameterized Complexity
e To showcase important notions from the field
e To give inspiration to use these ideas for the problems that
you study
e This talk has focus on complexity
e Examples often from graph drawing

@ Overview of existing notions
© New development: XNLP, XALP
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Easy problems with small parameters

@ Consider facility location problem:
Place as few as possible fire stations in a city such that
each house is < 15 minutes drive from fire station.

@ Problem is NP-hard, but ...

@ Easy if we have just money for three fire stations: try all
possible locations : O(n%).
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Theory of Parameterized Complexity

@ Many hard problems become easier / polynomial time
solvable when a parameter is small/fixed.

@ Early 1990s: Downey and Fellows build theory of
parameterized complexity: what is the time complexity
when we assume that some parameter k of the input or
output is considered to be small?

@ Subfield of algorithms research with:

o New terminology
e Conferences, workshops
e Hundreds (thousands?) of papers ...
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Parameterized problem

@ Parameterized problem: subset of ¥* x IN, with ¥ a finite
alphabet.

e We call the second argument the parameter: usually
denoted by k.

@ Compare with ‘classic’ problem: subset of ¥*.

@ Time complexity of algorithm is T(n, k)
(where in the classic setting we have T(n))
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Parameters

There are many different types of parametrizations possible:
@ Target value
@ Aspect of input size
@ Structural parameter of input

Some examples: ...
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Parameterization: target value

k-Planarity

Given: Graph G, integer k.

Parameter: k.

Question: can we embed G in the plane, such that no edge
has more than k crossings?

A

Planar edge deletion

Given: Graph G, integer k.

Parameter: k.

Question: can we turn G into a planar graph by removing at
most k edges?

.
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Parameterization: input ‘size’

Planar embedding with edge length constraints

Given: Planar graph G = (V, E), for each edge e € E, an
interval I C IR.

Parameter: the number of vertices of G, |V/|.

Question: is there a plane embedding of G such that for each
edge e, the length of e in the embedding is a value in I¢?
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Parameterization: structural value of input

Rectilinear planarity testing (treewidth)

Given: Planar graph G.

Parameter: the treewidth of G.

Question: Can we draw G such that each edge is drawn as a
horizontal or vertical line segment?

.

Upwards Planarity Drawing (nb sources)

Given: Directed acyclic graph G = (V, E).

Parameter: number d of vertices of indegree 0.

Question: Is there a plane drawing of G with for each arc, the
y-coordinate increases?

.
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Parameterization: combined parameters

k-Planarity (k+pw)

Given: Graph G, integer k

Parameter: k + pathwidth(G)

Question: can we embed G in the plane, such that no edge
has more than k crossings?

Theorem (Gima et al., GD 2025)

1-planarity is NP-complete for graphs of pathwidth 4.
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Parameterized complexity

What is the time complexity of a problem as a function of both:
@ the input size (V| or number of bits to write the input)
@ and the value of the parameter?

‘Classic’ cases:
@ Polynomial. Time of form (n 4 k)0

@ Para-NP-complete: there is a value of the parameter k for
which the problem with this parameter is NP-complete.

A para-NP-complete problem

As 1-Planarity testing is NP-complete for graphs of pathwidth 4
(Gima et al., GD 2025), k-Planarity is para-NP-complete for the
combined parameter k and pathwidth.
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For each value of k polynomial

Downey and Fellows, 1990s, define two flavours of problems
that are polynomial for each value of k:

FPT (Fixed Parameter Tractable)
There is an algorithm that uses f(k)n°(") time.

XP (Slice-wise polynomial time)
There is an algorithm that uses n(*) time.
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Different parameterizations — Different complexities

The same problem, but with different parameterisations, can
have varying parameterized complexity

(para) NP-complete XP, W[1]-hard FPT
[0 Fveon - + - s+« o+
[14] Theorem 4.2 Theorems 5.1 Corollary 6.5 Theorem 7.
and 6.4

Figure 2 The complexity landscape of STack Lavour ExteEnsion. VEDD c]L\uote:; the
tex+edge deletion distance, w denotes the page width of the f-page stack layout of I,
k= V(G)\ V(H)| + |E(G) "\ E(H)|. Boxes outlined in bold represent new results that we she
the linked theorems and corollaries. The only result that is not depicted is Theorem 3.2.

Figure: From: Depian et al., Graph Drawing 2024: The Parameterized
Complexity Of Extending Stack Layouts
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Upwards Planarity

Upwards Planarity

Given: Directed acyclic graph G
Question: Can we draw G without crossing arcs, such that all
arcs are increasing in the y-direction?

Theorem (Garg, Tamassia, 2001)

Upwarps PLaNARITY is NP-complete.
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Results for Upwards Planarity (selected results)

Different parameterizations give different complexities:

FPT by treedepth (Chaplick et al, 2022)

FPT by number of sources (Chaplick et al, 2022)

No polynomial kernel by treedepth (sketch later in this talk)
XP by treewidth (Chaplick et al, 2022)

W([1]-hard by treewidth (Jansen et al., GD 2023)
XALP-complete by treewidth (corollary from J et al, BS)
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FPT

FPT (Fixed Parameter Tractable) is the class of parameterized
problems with an algorithm that runs in time f(k)n°("), with f a
computable function.

Remark
Variants:
@ weakly uniform FPT: f is not necessarily computable. In
theory different, but no practical examples.
@ non-uniform FPT: for each k, we can have another
algorithm. Example: results from graph minor theory.
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FPT and XP

@ Complexity of XP is much higher than FPT:
f(k)n®(") vs nf(k),
@ Relation with kernelisation(next).

@ Downey-Fellows (1990s): Theory to show that problems
are unlikely to be in FPT (W-hierarchy later in the talk).

@ Proved with diagonalisation: FPT c XP.
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Kernelisation |

@ Before doing a ‘slow’ algorithm, first preprocess the input:
build an equivalent, but smaller input.

@ Kernelisation: with proof that the resulting equivalent input
is small: size bounded by function of parameter.

yes

([, ]{7) kernel -(I/, k/) solve :
no

Q(I7 k) = Q(I/7 k/)

@ In a kernel, the size of (I, k") is bounded by a function of k.
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Kernelisation Il

Kernelisation algorithm
A kernel (or kernelisation algorithm) for a problem Q is an
algorithm A maps inputs (/, k) of Q to inputs (/, k’) of the same
problem Q such that:
@ A uses polynomial time;
@ k’ < g(k)and || < g(k) for some function g (the new input
has size bounded by a function of the parameter);
Q Q(l,k) & Q(I,k’) (the answer to the problem does not
change).
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Kernels and FPT

A decidable problem P has a kernel, if and only if it fixed
parameter tractable.

=: take input (I, k), make in [|°(") time a kernel of size f(k),
and apply any algorithm to solve the kernel: |[|°(") 4 g(f(k))
time.

&: If P has an f(k)n® algorithm A: run A for n°*! time steps. If
A finishes, then output the answer (or transform to trivial
instance); otherwise: n°t! < f(k)n® = n < f(k), and the
original input is a kernel. O
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Example: Point-line Cover

Point-line Cover

Given: n points in 2-dimensional space, integer k.
Question: Can we draw k straight lines that cover all n points?

Figure: An instance, and a solution with k = 3
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Kernelisation algorithm

@ Wihile there is a line that covers more than k uncovered

points: choose it; k « k — 1.

Figure: If a line covers more than k uncovered points, we must
choose it
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Kernelisation algorithm

@ While there is a line that covers more than k uncovered
points: choose it; k « k — 1.

@ If we have more than k2 points: output NO (or give trivial
input with no solution)

Observe:

@ After Step 1, each line covers at most k points, so if
n > k2, there is no solution

The Point-LINE Cover problem has a kernel with k? points, and is
fixed parameter tractable.
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Problems without Polynomial Kernels

Kernel of polynomial size: procedure that changes (1, k) into
equivalent instance of size O(k°(")

Theorem (BDFH+FS/D)

If a parameterized problem is compositional and with parameter
in unary NP-hard, then it has no kernel of polynomial size,
unless coNP < NP/poly.

@ Compositional comes in two flavours: or-composition
(Fortnow/Santhanam) and and-composition (Drucker).

@ Idea: procedure to take ninstances (I, k)..., (I, k) and
build a new instance (/, f(k) with
QI f(k)) & V;Q(l;, k) or Q(I, f(k)) & N\; Q(l;, k).
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Upwards Planarity(treedepth) has no polynomial
kernel

Upwarps PLANARITY(freedepth) has no polynomial kernel unless
coNP C NP/poly.

@ Upwarps PLanARITY is NP-complete; the parameter treedepth
can be given in unary.

@ And-composition: take the disjoint union of graphs. The
result has an upwards planar drawing, iff each component
has an upwards planar drawing, and the treedepth
increases by at most 1.
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And-composition for Upwarps PLaNARITY(treedepth) —
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XP

XP (or slice-wise polynomial time) is the class of parameterized
problems with an algorithm that uses n'(¥) time for a
computable function f

@ Many problems known to be in XP — techniques include
dynamic programming, enumerating all solutions,
branching, ...

@ There are a few XP-complete problems (‘games with few
pieces’)
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Distinguishing FPT and XP

@ How can we tell that a problem is not in FPT?
@ Using complexity classes and reductions.

@ Compare to the situation P versus NP — polynomial
versus exponential time.
@ Downey and Fellows (1990s) introduced:

e Parameterized reductions.
o W-hierarchy with complexity classes:
WI[1], W[2],..., W[SAT], W[P].
@ Originally defined with help of circuits
@ Equivalent definitions with logic (follows)
e If W[1] = FPT, then the Exponential Time Hypothesis is
false — so, we expect that problems that are W[1]-hard are
not Fixed Parameter Tractable.
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Parameterized reduction

Complete problems are defined in terms of a type of reductions.
@ A parameterized reduction is a function ¢ that maps inputs
of parameterized problem A to parameterized problem B:
o A(lk) & B(®(l,k)); (YES < YES)
o If&(l,k)=(r, k"), then k’ < g(k) for a computable g (New
parameter is also bounded);
e ®(l,k) can be computed in f(k)n°(") time.

@ Some classes have more restrictions on reductions.

Theorem (Downey,Fellows)

If A has a parameterized reduction to B, and B is in FPT, then
A isin FPT.

So, if Bis not in FPT, then A is not in FPT. ..
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W]

@ A problem belongs to W[1], if and only if it has a
parameterized reduction to WEIGHTED 3-SATISFIABILITY.

WEIGHTED 3-SATISFIABILITY

Given: Boolean formula F in Conjunctive Normal Form with
three literals per clause, integer k.

Parameter: k.

Question: Can we satisfy F by setting exactly k variables to
true and all others to false?

@ Also holds also if we replace 3 by any other fixed integer
> 2, or ‘exactly’ by ‘at most’ or ‘at least’.

@ InpepeNDENT SET and Cuiaue are W[1]-complete; many other
known W[1]-hard and W[1]-complete problems.
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Upward and Orthogonal Planarity are W[1]-Hard
Parameterized by Treewidth

Orthogonal Planarity Testing

Given: Planar graph G
Question: Is there a planar drawing where all edges are either
a horizontal or a vertical segment?

Theorem (Jansen et al., GD 2023)

The Upwarp PLANARITY TESTING and ORTHOGONAL PLANARITY TESTING
are W[1]-hard with treewidth of G as parameter.
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W[2]

@ WI2] has similar characterisation, but clauses can be
arbitrary large.

@ A problem belongs to W[2], if and only if it has a
parameterized reduction to WeicHTED CNF-SATISFIABILITY.

WEeigHTED CNF-SATISFIABILITY

Given: Boolean formula F in Conjunctive Normal Form, integer
k

Parameter: k

Question: Can we satisfy F by setting exactly k variables to
true and all others to false?

@ Dowminating SET is W[2]-complete.
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W(t] fort > 2

@ WI(t] is ‘roughly’ problems of same complexity as deciding
if a Boolean formula with t alternations between AND and
OR can be satisfied by setting k variables to true.

Weighted t-Normalised Satisfiability

Given: Boolean formula F, integer k, with F of the following
form (with t alternations) AV AV A ---(—)X;, integer k
Parameter: k

Question: Can we satisfy F by setting exactly k variables to
true and all others to false?
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W[SAT]

@ W[SAT]: any Boolean formula.
@ W[SAT] <> WEIGHTED SATISFIABILITY.

WEIGHTED SATISFIABILITY

Given: Boolean formula F, integer k

Parameter: k

Question: Can we satisfy F by setting exactly k variables to
true and all others to false?
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WIP]

The last class in the W-hierarchy is W[P] < WEeigHTED CiRCUIT
SATISFIABILITY.

WEIGHTED SATISFIABILITY

Given: Boolean circuit C with n input gates and one output
gate, integer k

Parameter: k

Question: Can we let C output true by setting exactly k inputs
to true and all others to false?
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The W-hierarchy: discussion

@ Hardness for W[1] implies that it is unlikely that problem is
FPT.
@ Hardness for classes higher in W-hierarchy implies the
same (‘more unlikely’).
° Eroving W-hardness: similar to NP-completeness proofs
ut:
e parameter must stay bounded;
e exponential (or more) time in parameter is allowed.
@ In W-hierarchy: problems of the form: choose (at least, at
most, exactly) k elements out of n such that ‘something
holds’.
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Completeness - for what class?

@ In ‘classic’ complexity theory, we have many complete
problems: NP-complete problems Q usually have a simple
proof that Q € NP and a reduction that shows that Q is
NP-hard.

@ For W[1] (and other classes in the W-hierarchy), we have
several problems known to be hard for the class, but are
not known to be complete.

@ This gives a question for many problems, known to be
W([1]-hard: for which class are they complete? (And, does
that give more insight?)
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My XNLP-story starts with Bandwidth

@ Well studied problem, application for Gaussian elimination.
‘Reorganise a matrix such that all non-zero’s are in a
narrow band around the main diagonal’.

BANDWIDTH

Given: Undirected graph G = (V, E), integer k

Parameter: k

Question: Is there a bijection f: V — {1,2,...,|V|}, such that
for each edge {v, w} € E: |(f(v) — f(w)| < k?

1 3 4 6

Figure: A layout with bandwidth 2



Introduction FPT Kernels XP  The W-hierarchy Bandwidth XNLP XALP Conclusio
0000000000000 00 000000000 O 0000000000  O@0000  00000000000000 OOOOOO000000000 O

Some early results on Bandwidth

@ BanowinTH is NP-complete, for long-hair-caterpillars with
hair length three. (Monien, 1983)

@ 1984, Gurari, Sudborough: BanowintH is in XP: O(nk+1)
time. (Gurari, Sudborough, 1984)

@ Claim by (B, Fellows, Hallett, 1994) that BanowipTH is
W]t]-hard for all t for trees.
@ Conjecture by Hallett, 1994: BanowipTH is not in W[P]. Main
idea:
e Problems in W[P] have a certificate with O(klog n) bits.
e Bandwidth seems to need Q(n) bits for certificate.
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More recent results on Bandwidth (parameterized)

@ (Dregi, Lokshtanov, 2014): W[1]-hard for trees, ETH-based
lower bound.

@ (B, 2020): BanowipTH is W(t]-hard for all t for
long-hair-caterpillars.

@ (B, Groenland, Nederlof, Swennenhuis, 2021): BANDWIDTH
(for long-hair-caterpillars) is XNLP-complete.

Figure: A (long-hair-)caterpillar is a tree with all vertices of degree
more than two on one path
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The Gurari-Sudborough (1984) Dynamic
Programming algorithm for Bandwidth

@ Idea: look at initial sequences of £ vertices vy, ..., v,. Give
such a sequence a characteristic:

e the last k vertices, Ve_ki1,..., Ve
e which neighbours of vy_k1,..., vy belongto vy,..., v,
@ If vy,..., v, has the same characteristic as vj, ..., v; then
either both or none of these two can be extended to a
solution.

@ For each ¢, we have O(n*) characteristics

@ Algorithm: for ¢ = 1 to n, build table T, of all possible
characteristics of initial sequences of length ¢.
If T, is non-empty, say Yes, otherwise No
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From an XP Algorithm to a Non-deterministic
Algorithm

@ Change XP-algorithm for BanowipTH by Gurari, Subborough
to a non-deterministic algorithm:

e Instead of building entire tables, each time
non-deterministically guess one entry from each table. (In
each step, guess the next vertex in the sequence, and
verify if this does not conflict with the bandwidth)

(-0
R NaR el
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A non-deterministic algorithm for BanowipTH

SRR RIR I
aRER REE, R

Algorithm has k vertices and one counter in [1, n] in memory:

BanowipTH can be solved by a non-deterministic Turing Machine
in O(kn) time with O(k log n) bits additional memory.

This brings us to a class defined by (Elberfeld et al., 2015).
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Birth of XNLP

(Elberfeld, Stockhusen, Tantau, 2015) define parameterized
classes with bounded memory and time, including
@ N|[f poly,log]: problems solvable on
e Non-deterministic Turing Machine;
o f(k)n°() time;
o f(k)logn space.
@ (EST, 2015): problems complete for N[f poly, log]:

e Non-deterministic Turing machine acceptance with O(k)
cells read-write-tape (with polynomial size alphabet) and
running time bounded by polynomial in n

@ TiMep NoN-DETERMINISTIC ACCEPTING LINEAR CELLULAR AUTOMATON

o Longest CommoN SuBseQuENCE (with variants)

(B, Groenland, Nederlof, Swennenhuis, 2021): renamed
N[f poly, log] to XNLP.
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Classes with logarithmic space

Classic
@ L: deterministic, O(log n) space
@ NL: non-deterministic, O(log n) space
@ L and NL imply polynomial time
Parameterized
@ XL: deterministic, O(f(k) log n) space
@ XNL: non-deterministic, O(f(k) log n) space
@ XNLP: non-deterministic, O(f(k) log n) space and
O(f(k)poly(n)) time
..C XP
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Many new XNLP-complete problems

Many new XNLP-complete problems have been found (2021 —
now), with results building upon each other, including:

@ Many problems with pathwidth as parameter (several
papers), or with some other ‘linear width parameter’

@ Reconfiguration problems (BGNS, 2021)
@ Scheduling problems (BGNS 2021); (Mallem 2024)
@ Linear graph structure problems, e.g., BanowipTH

Theorem (Blazej et al., 2024)

Orberep LEVEL PLANARITY Parameterized by the Number of Levels
is XNLP-complete.

Theorem (B, Groenland, Nederlof, Swennenhuis, 2021)
BanowiptH is XNLP-complete.
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Binary CSP

Binary CSP

Given: Graph G = (V, E), for each vertex v a set of colours
C(v), and for each edge (v, w), a set of pairs of allowed colours
C(v,w) C C(v) x C(v)

Question: Can we assign each vertex v a colour f(v) € C(v),
such that for each edge (v, w), we have (f(v), f(w) € C(v, w)?
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Possible ‘starting” XNLP-hard problem

Binary CSP is XNLP-complete on k x n grid graphs, with k as
parameter.

The hardness proof can be ‘generic’ (in the style of Cook’s
proof of the NP-completeness of SarisriaeiLITy, using the Turing
machine characterisation of the class.

Figure: A 4 x n grid graph
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Proof sketch: Membership

Binary CSP for k by n grid graphs is in XNLP:
@ Fori=1ton:

e Guess the colours for the vertices in column i.

e Have the colours of vertices in columns i — 1 (if existing)
and i in memory.

e Check that all adjacent vertices in columns i — 1 and i have
allowed colour pairs. If not: reject.

@ Accept.

We have 2k vertex colours and the value of i in memory:
O(k log n) bits.
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Proof sketch: Hardness I: the Turing Machine

@ Finite alphabet ¥;

@ Finite set of states S, with subsets Sy of accepting states
and Sg of rejecting states;

@ Read-Write Tape of length f(k) log n + head;

@ Input tape of length n + head;

@ Collection of transitions: read state, symbol at head on
input tape, symbol at head at RW tape — write symbol at
head on RW tape, move heads 0 or 1 step left or right, go
to new state (non-deterministic).
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Proof: Hardness Il: Model in the grid

e ly (==sYY)  Time nO®
—
>
>
—
: y ]
The read-write tape of 4logn size The Input tape

Figure: Partition the RW-tape in f(k) pieces of size log n each. The
colour of the vertex on row i, column t gives the content of the ith
piece of RW-tape and state and location of both heads at time t.

First column colours give initial configuration; last column
colours must have accepting states. BinCSP can model the
proper functioning of TM.
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Dynamic Programming on Path Decompositions

@ Graphs of small pathwidth have a path decomposition of
small width.

@ Dynamic programming: compute from left to right a table
for each bag.

@ Deduce the answer from the last bag.

9,0,0,0,0,0;0
AR

yes
s
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XNLP-membership Proofs on Path Decompositions

9,0,0,0,0,0,0
PV b

yes
I

9,0,0,0,0,0,0
N AR A
TP T T

Figure: Turn the DP into XNLP-membership by guessing the element
from the next table instead of building it
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Example Transformation: List Colouring

List Colouring

Given: Graph G = (V, E), set of colours C, for each vertex
v e V, alist of colours L(v) CC

Question: Is there a colouring ¢ : V — C, such that for all
ve V:c(v) e L(v), and for all edges {v, w} € E: c(v) # c(w).

List CoLouring with pathwidth as parameter is XNLP-complete. I

Membership with discussed technique (DP by (Jansen,
Scheffler, 1997).
Hardness by reduction from Binary CSP for k x n grids.




Introduction FPT Kernels XP  The W-hierarchy Bandwidth XNLP XALP Conclusio
0000000000000 00 000000000 O 0000000000 000000  O0O0000000000e00 0O0000000000000 O

Transformation

@ Take input of Binary CSP for k x n grids.
© Change to equivalent instance with each vertex different
colour set.

© For each forbidden pair, add a new vertex with list the
forbidden pair.

e o8 8

O.—Q

| 4
@)

v w
‘\./‘
@

@)
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Transformation Keeps Parameter Small

SO0
SRR OLDD

Figure: From Binary CSP to List CoLouring: A k X n grid graph
(pathwidth k) is transformed to a graph with pathwidth < k + 1

XNLP-hardness proofs for other problems: chains of
reductions, each keeping parameter bounded.
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Consequences of XNLP-hardness

The Slice-wise Polynomial Space Conjecture (follows from
(Michat Pilipczuk and Wrochna, 2018), building upon (Allender

et al., 2014))

If Q is an XNLP-hard problem, then there is no algorithm that
solves Q in O(n'(k)) time and f(k)n°(") space.

@ If SPSC holds, no XP-algorithm for the problem can use
FPT space!

@ Indeed, the known XP algorithms for XNLP-complete
problems use dynamic programming with XP-size tables.

@ XNLP-hardness implies W([t]-hardness for all t € N, but
with usually much simpler proofs.
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From path- to tree-structured graphs

@ Several problems on graphs with a linear structure are
complete for XNLP.

@ When parameterising by treewidth instead of pathwidth, or
clique-width instead of linear clique-width, we have
XNLP-hardness.

@ For what class are these problems complete??
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XALP

@ Based on (Allender et al. 2014) and (Michat Pilipczuk and
Wrochna, 2017) .

@ (B, Groenland, Jacob, Pilipczuk, Pilipczuk, 2022) define a
class and call it XALP (parameterized variant of class
called NLPaux or SAC(O(log n), n°)).

@ Where XNLP characterises path-structured dynamic
programming, XALP characterises tree-structured dynamic
programming.
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Definitions of XALP

BGJPP give a number of equivalent definitions of XALP, using
Alternating Turing Machines and circuits. An intuitive definition,
and easy to work with for membership proofs is:

XALP

Let XALP be the class of parameterized problems accepted by
a Non-deterministic Turing Machine that

@ uses f(k)n°) time, for some function f;

@ has two types of memory:
e It has a stack to which it can push symbols, or pop the top
symbol;
e It has a read-write tape of size f(k) log n.

l.e., XNLP plus a stack!
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Membership in XALP

@ Most dynamic programming algorithms on a tree
decomposition that ‘use XP time’ can be turned into
XALP-membership proofs

@ Change ‘build entire tables’ to ‘guess entry in each table’
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DP on tree decompositions

yes
10

A dynamic programming algorithm for tree decompositions:
@ computes for each bag a table, in post-order (bottom-up);
@ deduces the answer from the bag of the root.
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DP on tree decompositions and XALP-membership

yes .
yes
no o

Turn DP into XALP-membership:
Traverse tree in post-order (bottom-up).

@ If bag i has a € [0, 2] children: pop a elements from stack.
@ These give ‘guessed’ table entries of children.
@ From these, guess table entry for i and push it on stack.
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@ About all problems, known to be XNLP-complete with
pathwidth as parameter are XALP-complete with treewidth
as parameter.

@ Sequence of reductions start with

@ Non-DetermiNisTIc TurING MACHINE AccePTANCE With specific,
extra conditions (details omitted here,) — Binary CSP with
treewidth as parameter

Theorem (B, Szilagyi, 2024)
Binary CSP for planar graphs with outerplanarity as parameter.

Proof sketch: crossover gadget and embedding of graph in
plane with ‘few crossings’.
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Proof gadget for PLanar Binary CSP(outerplanarity)

A Qv w ¢ B A Qv w ¢ B
- » 2NAXBxCxD
Cgr N D CoJ'x yN D

Figure: Crossover gadget.

C’'(v,z) = {((c1),(c1,c2,03,Ca)) | (c1,cq) € C(v,y)}

C'(w,z) ={((c2),(c1,¢2,¢3,¢4)) | (C2,c3) € C(W, )}

C’(X Z) {E(Cs),(Cwsz Cs, C4)§ | (c2,¢3) € C(w, )%
(ca)

C’(y,z) ={((ca),(c1,C2,€3,C4) |(C1/C4)€C(W,X)



Introduction FPT Kernels XP  The W-hierarchy Bandwidth XNLP XALP Conclusio
0000000000000 00 000000000 O 0000000000 000000  0O0000000000000 OOOOOOO0e000000 O

Construction in proof for PLANAR BINARY
CSP(outerplanarity)

@ The graph in the proof for XALP-hardness for BiNnarY
CSP(treewidth) has a special structure.

@ If we replace each crossover by a vertex then we get an
O(tw?)-outerplanar graph

Figure: Construction gives graph with outerplanarity O(iw?)
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Upwards Planarit and XALP

Upwarps PLANARITY (treewidth) is XALP-hard. I

Follows from combining series of reductions:
@ Binary CSP(treewidth) (BGJPP, 2022)
(From Turing Machine Acceptance)
© - Binary CSP(outerplanarity) (B, Szilagyi, 2024)
© — Au-or-NotHing FLow(outerplanarity) (B, Szilagyi, 2024)
(elegant proof using Sidon sets (= Golomb rulers)

© — Upwarps PLanARITY(treewidth) (Jansen et al, GD 2023)
(Long clever proof)
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Elements of proof: All-or-nothing flow |

All-or-Nothing Flow

Given: Directed acyclic graph G = (V, E), capacity of each
edge c(e) € N, target flow integer a, vertices s, t.

Question: Is there a flow f from s to t with value a, such that
for each arc e: f(e) =0 or f(e) = c(e)?

XALP-hardness with parameter treewidth; for planar graphs
with parameter outerplanarity (or treewidth):

@ From Binary CSP

@ Use of Sidon set to model colours

@ Two gadgets

@ Piecing the gadgets together (not today)
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Sidon sets / Golomb rulers

A Sidon set (also known as Golomb ruler) is a set of positive
integers {ay, ..., an} with the property that each different pair of
integers from the set has a different sum: a;, + a;, = a;, + a,,
implies {i1, i2} = {j1,j=}.

Theorem (Erdds, Turan, 1941)

A Golomb ruler with n elements in {1,4n?} exists and can be
constructed in polynomial time.
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Elements of proof: All-or-nothing flow Il

Map each colour to an element of a Sidon set.

{2,3,4}

Figure: Gadget foraset S. If 2- min(S) > max(S), then flow through
gadget is 0, or one element from S
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Elements of proof: All-or-nothing flow Il

e 3 {2,8)  {2,8)
®,0 04 —»
O;—0, 8 {3,4} 3,4}

Figure: Gadget for arc vw. Either 0 flow, or flow models correct colour
of v, correct colour of w, and correct colouring over arc vw. Use
property of Sidon set.
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More XALP-complete problems: Structural problems

@ Tree ParTiTion WipTH (introduced as Strong Treewidth by
Seese in 1985).

@ Dowmino TReewiDTH: IS there a tree decomposition of width k
(parameter), such that each vertex is in at most two bags.

@ TrianGuLATING CoLourep GRraPHs (de Vlas, 2023): Given a
graph with a k-colouring of the vertices, is it a subgraph of
a properly coloured chordal graph? (Problem with
application from phylogeny.)
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Conclusions

@ Rich theory of parameterized complexity; also rich
landscape of subclasses of XP.

@ XNLP ‘captures’ large table sequential dynamic
programming.

@ XALP ‘captures’ large table tree-structured dynamic
programming.

@ XNLP-hardness implies (assuming the SPSC)
XP-algorithms with ‘much space’.

@ Many problems are known/shown to be hard for W[1] or
W[2] — interesting to improve this to hardness for larger
classes, and aim at completeness.
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